6. References#
Time series. August 2025. Page Version ID: 1305291979. URL: https://en.wikipedia.org/w/index.php?title=Time_series&oldid=1305291979 (visited on 2025-08-15).
Peter C. Austin, Ian R. White, Douglas S. Lee, and Stef Van Buuren. Missing Data in Clinical Research: A Tutorial on Multiple Imputation. Canadian Journal of Cardiology, 37(9):1322–1331, September 2021. doi:10.1016/j.cjca.2020.11.010.
Ying Bai, Nailong Guo, and Gerald Agbegha. Fuzzy Interpolation and Other Interpolation Methods Used in Robot Calibrations. Journal of Robotics, 2012(1):376293, 2012. doi:10.1155/2012/376293.
Gianluca Baio and Baptiste Leurent. An Introduction to Handling Missing Data in Health Economic Evaluations. In Jeff Round, editor, Care at the End of Life, pages 73–85. Springer International Publishing, Cham, 2016. doi:10.1007/978-3-319-28267-1_6.
Amanda N. Baraldi and Craig K. Enders. An introduction to modern missing data analyses. Journal of School Psychology, 48(1):5–37, February 2010. doi:10.1016/j.jsp.2009.10.001.
Aurelian Bejancu. Transfinite Thin Plate Spline Interpolation. Constructive Approximation, 34(2):237–256, October 2011. doi:10.1007/s00365-010-9118-3.
Marco L. Bittencourt, Ney A. Dumont, and Jan S. Hesthaven, editors. Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2016: Selected Papers from the ICOSAHOM conference, June 27-July 1, 2016, Rio de Janeiro, Brazil. Volume 119 of Lecture Notes in Computational Science and Engineering. Springer International Publishing, Cham, 2017. ISBN 978-3-319-65869-8 978-3-319-65870-4. doi:10.1007/978-3-319-65870-4.
Alberto Bordino and Thomas B. Berrett. Tests of Missing Completely At Random based on sample covariance matrices. December 2024. arXiv:2401.05256 [math]. doi:10.48550/arXiv.2401.05256.
Sean Bourke, John Magaña Morton, and Paul Williams. Effect of JumpstartMD, a Commercial Low-Calorie Low-Carbohydrate Physician-Supervised Weight Loss Program, on 22,407 Adults. Journal of Obesity, 2020(1):8026016, 2020. doi:10.1155/2020/8026016.
George E. P. Box, Gwilym M. Jenkins, Gregory C. Reinsel, and Greta M. Ljung. Time series analysis: forecasting and control. Wiley series in probability and statistics. Wiley, Hoboken, New Jersey, fifth edition edition, 2016. ISBN 978-1-118-67502-1 978-1-118-67492-5.
Andrew Briggs, Taane Clark, Jane Wolstenholme, and Philip Clarke. Missing.... presumed at random: cost‐analysis of incomplete data. Health Economics, 12(5):377–392, May 2003. URL: https://onlinelibrary.wiley.com/doi/10.1002/hec.766 (visited on 2024-12-22), doi:10.1002/hec.766.
Peter J. Brockwell and Richard A. Davis. Introduction to time series and forecasting. Springer texts in statistics. Springer, Switzerland, 3rd ed edition, 2016. ISBN 978-3-319-29854-2.
R.G. Brown. Smoothing, Forecasting and Prediction of Discrete Time Series. Dover Phoenix Editions. Dover Publications, 2004. ISBN 978-0-486-49592-7. URL: https://books.google.com/books?id=XXFNW_QaJYgC.
Martin Dietrich Buhmann, Martin Buhmann, and Janin Jäger. Quasi-Interpolation. Cambridge University Press, March 2022. ISBN 978-1-107-07263-3. Google-Books-ID: yBhdEAAAQBAJ.
Hongyuan Cao, Jialiang Li, and Jason P. Fine. On last observation carried forward and asynchronous longitudinal regression analysis. Electronic Journal of Statistics, 10(1):1155–1180, January 2016. doi:10.1214/16-EJS1141.
Jingwei Cao, Chuanxue Song, Shixin Song, Feng Xiao, and Silun Peng. Lane Detection Algorithm for Intelligent Vehicles in Complex Road Conditions and Dynamic Environments. Sensors, 19(14):3166, January 2019. doi:10.3390/s19143166.
John M. Chambers, William S. Cleveland, Beat Kleiner, and Paul A. Tukey. Graphical Methods for Data Analysis. Chapman and Hall/CRC, 1 edition, January 2018. ISBN 978-1-351-07230-4. URL: https://www.taylorfrancis.com/books/9781351080750 (visited on 2025-12-31), doi:10.1201/9781351072304.
Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A survey. ACM Computing Surveys, 41(3):1–58, July 2009. URL: https://dl.acm.org/doi/10.1145/1541880.1541882, doi:10.1145/1541880.1541882.
Chung Chen and Lon-Mu Liu. Joint Estimation of Model Parameters and Outlier Effects in Time Series. Journal of the American Statistical Association, 88(421):284–297, March 1993. URL: https://www.tandfonline.com/doi/full/10.1080/01621459.1993.10594321, doi:10.1080/01621459.1993.10594321.
Tsai-Min Chen, Yuan-Hong Tsai, Huan-Hsin Tseng, Kai-Chun Liu, Jhih-Yu Chen, Chih-Han Huang, Guo-Yuan Li, Chun-Yen Shen, and Yu Tsao. SRECG: ECG Signal Super-Resolution Framework for Portable/Wearable Devices in Cardiac Arrhythmias Classification. IEEE Transactions on Consumer Electronics, 69(3):250–260, August 2023. Conference Name: IEEE Transactions on Consumer Electronics. doi:10.1109/TCE.2023.3237715.
Penggen Cheng, Zhenyang Hui, Yuanping Xia, Yao Yevenyo Ziggah, Youjian Hu, and Jing Wu. An Improved Skewness Balancing Filtering Algorithm Based on Thin Plate Spline Interpolation. Applied Sciences, 9(1):203, January 2019. Number: 1 Publisher: Multidisciplinary Digital Publishing Institute. doi:10.3390/app9010203.
Sharon Chiang, Vikram Rao, and Marina Vannucci. Statistical Methods in Epilepsy. Chapman and Hall/CRC, Boca Raton, 1 edition, March 2024. ISBN 978-1-003-25451-5. URL: https://www.taylorfrancis.com/books/9781003254515, doi:10.1201/9781003254515.
Robert B Cleveland, William S Cleveland, Jean E McRae, and Irma Terpenning. STL: a seasonal-trend decomposition. Journal of Official Stattistics, 6(1):3–73, 1990. URL: https://www.math.unm.edu/~lil/Stat581/STL.pdf.
William S. Cleveland. Visualizing data. AT & T Bell Laboratories, Murray Hill, NJ, 1993. ISBN 978-0-9634884-0-4.
Rémi Colin-Chevalier, Frédéric Dutheil, Sébastien Cambier, Samuel Dewavrin, Thomas Cornet, Julien Steven Baker, and Bruno Pereira. Methodological Issues in Analyzing Real-World Longitudinal Occupational Health Data: A Useful Guide to Approaching the Topic. International Journal of Environmental Research and Public Health, 19(12):7023, June 2022. doi:10.3390/ijerph19127023.
Melissa R Dale, Anil Jain, and Arun Ross. On Missing Scores in Evolving Multibiometric Systems. In 2022 26th International Conference on Pattern Recognition (ICPR), 982–988. 2022. doi:10.1109/ICPR56361.2022.9956535.
A.M. Davey and B.E. Flores. Identification of seasonality in time series: A note. Mathematical and Computer Modelling, 18(6):73–81, September 1993. URL: https://linkinghub.elsevier.com/retrieve/pii/089571779390126J (visited on 2025-12-12), doi:10.1016/0895-7177(93)90126-J.
Robert Dawson. How Significant is a Boxplot Outlier? Journal of Statistics Education, 19(2):2, July 2011. doi:10.1080/10691898.2011.11889610.
Conor Dolan, Sophie Van Der Sluis, and Raoul Grasman. A Note on Normal Theory Power Calculation in SEM With Data Missing Completely at Random. Structural Equation Modeling: A Multidisciplinary Journal, 12(2):245–262, April 2005. doi:10.1207/s15328007sem1202_4.
James Durbin. Time Series Analysis by State Space Methods. Number v.38 in Oxford Statistical Science Ser. Oxford University Press, Incorporated, Oxford, 2nd ed edition, 2012. ISBN 978-0-19-964117-8 978-0-19-162718-7.
Ludwig Fahrmeir, Thomas Kneib, Stefan Lang, and Brian Marx. Regression: Models, Methods and Applications. Springer Science & Business Media, May 2013. ISBN 978-3-642-34333-9. Google-Books-ID: EQxU9iJtipAC.
A. J. Fox. Outliers in Time Series. Journal of the Royal Statistical Society Series B: Statistical Methodology, 34(3):350–363, July 1972. doi:10.1111/j.2517-6161.1972.tb00912.x.
Menna Ibrahim Gabr, Yehia Mostafa Helmy, and Doaa Saad Elzanfaly. Effect of Missing Data Types and Imputation Methods on Supervised Classifiers: An Evaluation Study. Big Data and Cognitive Computing, 7(1):55, March 2023. Number: 1 Publisher: Multidisciplinary Digital Publishing Institute. doi:10.3390/bdcc7010055.
Everette S. Gardner. Exponential smoothing: The state of the art. Journal of Forecasting, 4(1):1–28, January 1985. doi:10.1002/for.3980040103.
Simon B. Goldberg, Daniel M. Bolt, and Richard J. Davidson. Data Missing Not at Random in Mobile Health Research: Assessment of the Problem and a Case for Sensitivity Analyses. Journal of Medical Internet Research, 23(6):e26749, June 2021. doi:10.2196/26749.
Ron Goldman. Pyramid Algorithms: A Dynamic Programming Approach to Curves and Surfaces for Geometric Modeling. Elsevier, July 2002. ISBN 978-0-08-051547-2. Google-Books-ID: xFuhIl1rb2sC.
Markus Goldstein and Seiichi Uchida. A Comparative Evaluation of Unsupervised Anomaly Detection Algorithms for Multivariate Data. PLOS ONE, 11(4):e0152173, April 2016. URL: https://dx.plos.org/10.1371/journal.pone.0152173, doi:10.1371/journal.pone.0152173.
Ulf Grenander and Murray Rosenblatt. Statistical analysis of stationary time series. AMS Chelsea Publ, Providence, RI, 2., (corr.) ed., repr edition, 2008. ISBN 978-0-8218-4437-3.
Hadley Wickham Garrett Grolemund. R for Data Science. O'Reilly Media, Inc., Place of publication not identified, 2016. ISBN 978-1-4919-1038-2. OCLC: 972569031.
Cong Guo, Wei Yang, Zheng Li, and Chun Liu. A novel feature selection framework for incomplete data. Chemometrics and Intelligent Laboratory Systems, 252:105193, September 2024. doi:10.1016/j.chemolab.2024.105193.
Toral Gupta and Neil J. Cornish. Bayesian power spectral estimation of gravitational wave detector noise revisited. Physical Review D, 109(6):064040, March 2024. Publisher: American Physical Society. doi:10.1103/PhysRevD.109.064040.
William F. Guthrie. NIST/SEMATECH e-Handbook of Statistical Methods (NIST Handbook 151). 2020. URL: https://www.itl.nist.gov/div898/handbook/, doi:10.18434/M32189.
Kaylea Haynes, Paul Fearnhead, and Idris A. Eckley. A computationally efficient nonparametric approach for changepoint detection. Statistics and Computing, 27(5):1293–1305, September 2017. doi:10.1007/s11222-016-9687-5.
Tobias Hecker, Getrude Mkinga, Eva Hartmann, Mabula Nkuba, and Katharin Hermenau. Sustainability of effects and secondary long-term outcomes: One-year follow-up of a cluster-randomized controlled trial to prevent maltreatment in institutional care. PLOS Global Public Health, 2(5):e0000286, May 2022. Publisher: Public Library of Science. doi:10.1371/journal.pgph.0000286.
Daniel F. Heitjan and Srabashi Basu. Distinguishing “Missing at Random” and “Missing Completely at Random”. The American Statistician, 50(3):207–213, August 1996. doi:10.1080/00031305.1996.10474381.
Jerry L. Hintze and Ray D. Nelson. Violin Plots: A Box Plot-Density Trace Synergism. The American Statistician, 52(2):181–184, May 1998. URL: http://www.tandfonline.com/doi/abs/10.1080/00031305.1998.10480559, doi:10.1080/00031305.1998.10480559.
Edward Hollingdale, Francisco Javier Pérez-Barbería, and David McPetrie Walker. Inferring symmetric and asymmetric interactions between animals and groups from positional data. PLOS ONE, 13(12):e0208202, December 2018. Publisher: Public Library of Science. doi:10.1371/journal.pone.0208202.
Anastasiia Holovchak, Helen McIlleron, Paolo Denti, and Michael Schomaker. Recoverability of causal effects under presence of missing data: a longitudinal case study. Biostatistics, pages kxae044, November 2024. doi:10.1093/biostatistics/kxae044.
Peter J. Huber and Elvezio M. Ronchetti. Robust statistics. Wiley series in probability and statistics. Wiley, Hoboken (N.J.), 2nd ed edition, 2009. ISBN 978-0-470-12990-6.
R.J. Hyndman and G. Athanasopoulos. Forecasting: principles and practice. OTexts, 2018. ISBN 978-0-9875071-1-2. URL: https://books.google.com/books?id=_bBhDwAAQBAJ.
Rob J. Hyndman and George Athanasopoulos. Forecasting: principles and practice. OTexts, Melbourne, Australia, third edition edition, 2021. ISBN 978-0-9875071-3-6.
Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani, and Jonathan Taylor. An Introduction to Statistical Learning: with Applications in R. Springer Texts in Statistics. Springer Cham, 2023. ISBN 9783031391897. URL: https://link.springer.com/book/10.1007/978-3-031-38747-0.
Anders W. Jørgensen, Lars H. Lundstrøm, Jørn Wetterslev, Arne Astrup, and Peter C. Gøtzsche. Comparison of Results from Different Imputation Techniques for Missing Data from an Anti-Obesity Drug Trial. PLOS ONE, 9(11):e111964, November 2014. Publisher: Public Library of Science. doi:10.1371/journal.pone.0111964.
Ioannis Kalogridis. Robust thin-plate splines for multivariate spatial smoothing. Econometrics and Statistics, June 2023. doi:10.1016/j.ecosta.2023.06.002.
Klaus Kammerer, Burkhard Hoppenstedt, Rüdiger Pryss, Steffen Stökler, Johannes Allgaier, and Manfred Reichert. Anomaly Detections for Manufacturing Systems Based on Sensor Data—Insights into Two Challenging Real-World Production Settings. Sensors, 19(24):5370, December 2019. URL: https://www.mdpi.com/1424-8220/19/24/5370, doi:10.3390/s19245370.
S. Kandasamy, F. Baret, A. Verger, P. Neveux, and M. Weiss. A comparison of methods for smoothing and gap filling time series of remote sensing observations – application to MODIS LAI products. Biogeosciences, 10(6):4055–4071, June 2013. Publisher: Copernicus GmbH. doi:10.5194/bg-10-4055-2013.
R. Killick, P. Fearnhead, and I. A. Eckley. Optimal Detection of Changepoints With a Linear Computational Cost. Journal of the American Statistical Association, 107(500):1590–1598, December 2012. URL: https://www.tandfonline.com/doi/full/10.1080/01621459.2012.737745, doi:10.1080/01621459.2012.737745.
Boris I. Kvasov. Methods of Shape-preserving Spline Approximation. World Scientific, 2000. ISBN 978-981-02-4010-3. Google-Books-ID: _So7vgJTEZYC.
Christophe Leys, Christophe Ley, Olivier Klein, Philippe Bernard, and Laurent Licata. Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median. Journal of Experimental Social Psychology, 49(4):764–766, July 2013. doi:10.1016/j.jesp.2013.03.013.
Cheng Li. Little's Test of Missing Completely at Random. The Stata Journal, 13(4):795–809, December 2013. Publisher: SAGE Publications. doi:10.1177/1536867X1301300407.
Yang Li, Xiaojiao Gu, and Yonghe Wei. A Deep Learning-Based Method for Bearing Fault Diagnosis with Few-Shot Learning. Sensors, 24(23):7516, January 2024. Number: 23 Publisher: Multidisciplinary Digital Publishing Institute. doi:10.3390/s24237516.
Zheng Li, Caili Guo, Xin Wang, Hao Zhang, and Yanjun Wang. Integrating listwise ranking into pairwise-based image-text retrieval. Knowledge-Based Systems, 287:111431, March 2024. URL: https://www.sciencedirect.com/science/article/pii/S0950705124000662 (visited on 2025-01-01), doi:10.1016/j.knosys.2024.111431.
Jianfang Lian, Wentao Yu, Kui Xiao, and Weirong Liu. Cubic Spline Interpolation-Based Robot Path Planning Using a Chaotic Adaptive Particle Swarm Optimization Algorithm. Mathematical Problems in Engineering, 2020(1):1849240, 2020. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1155/2020/1849240. URL: https://onlinelibrary.wiley.com/doi/abs/10.1155/2020/1849240 (visited on 2025-01-04), doi:10.1155/2020/1849240.
Benjamin Lindemann, Benjamin Maschler, Nada Sahlab, and Michael Weyrich. A survey on anomaly detection for technical systems using LSTM networks. Computers in Industry, 131:103498, October 2021. URL: https://linkinghub.elsevier.com/retrieve/pii/S0166361521001056, doi:10.1016/j.compind.2021.103498.
Roderick J. A. Little. A Test of Missing Completely at Random for Multivariate Data with Missing Values. Journal of the American Statistical Association, 83(404):1198–1202, December 1988. Publisher: ASA Website. URL: https://www.tandfonline.com/doi/abs/10.1080/01621459.1988.10478722 (visited on 2024-12-22), doi:10.1080/01621459.1988.10478722.
Thomas Maier, Mark Jarrell, Thomas Pruschke, and Matthias H. Hettler. Quantum cluster theories. Reviews of Modern Physics, 77(3):1027–1080, October 2005. Publisher: American Physical Society. URL: https://link.aps.org/doi/10.1103/RevModPhys.77.1027 (visited on 2025-01-04), doi:10.1103/RevModPhys.77.1027.
Jorge Martínez Sánchez, Álvaro Váquez Álvarez, David López Vilariño, Francisco Fernández Rivera, José Carlos Cabaleiro Domínguez, and Tomás Fernández Pena. Fast Ground Filtering of Airborne LiDAR Data Based on Iterative Scan-Line Spline Interpolation. Remote Sensing, 11(19):2256, January 2019. Number: 19 Publisher: Multidisciplinary Digital Publishing Institute. URL: https://www.mdpi.com/2072-4292/11/19/2256 (visited on 2025-01-04), doi:10.3390/rs11192256.
Robert Mcgill, John W. Tukey, and Wayne A. Larsen. Variations of Box Plots. The American Statistician, 32(1):12–16, February 1978. URL: http://www.tandfonline.com/doi/abs/10.1080/00031305.1978.10479236, doi:10.1080/00031305.1978.10479236.
Geert Molenberghs and Geert Verbeke. Generalized Estimating Equations. In Models for Discrete Longitudinal Data, pages 151–187. Springer, New York, NY, 2005. URL: https://doi.org/10.1007/0-387-28980-1_8 (visited on 2024-12-21), doi:10.1007/0-387-28980-1_8.
D.C. Montgomery. Statistical Quality Control, 7th Edition. Wiley, 2012. ISBN 978-1-118-21468-8. URL: https://books.google.com/books?id=RgQcAAAAQBAJ.
Qusay Muzaffar, David Levin, and Michael Werman. Approximating a Function with a Jump Discontinuity—The High-Noise Case. AppliedMath, 4(2):561–569, June 2024. Number: 2 Publisher: Multidisciplinary Digital Publishing Institute. URL: https://www.mdpi.com/2673-9909/4/2/30 (visited on 2025-01-04), doi:10.3390/appliedmath4020030.
Alma Pedersen, Ellen Mikkelsen, Deirdre Cronin-Fenton, Nickolaj Kristensen, Tra My Pham, Lars Pedersen, and Irene Petersen. Missing data and multiple imputation in clinical epidemiological research. Clinical Epidemiology, Volume 9:157–166, March 2017. URL: https://www.dovepress.com/missing-data-and-multiple-imputation-in-clinical-epidemiological-resea-peer-reviewed-article-CLEP (visited on 2024-12-22), doi:10.2147/CLEP.S129785.
Daniel Peña and Julio Rodríguez. The log of the determinant of the autocorrelation matrix for testing goodness of fit in time series. Journal of Statistical Planning and Inference, 136(8):2706–2718, August 2006. URL: https://linkinghub.elsevier.com/retrieve/pii/S0378375804004574 (visited on 2025-12-29), doi:10.1016/j.jspi.2004.10.026.
Sebastian Raubitzek and Thomas Neubauer. Taming the Chaos in Neural Network Time Series Predictions. Entropy, 23(11):1424, November 2021. Number: 11 Publisher: Multidisciplinary Digital Publishing Institute. doi:10.3390/e23111424.
Payam Refaeilzadeh, Lei Tang, and Huan Liu. Cross-Validation, pages 532–538. Springer US, Boston, MA, 2009. doi:10.1007/978-0-387-39940-9_565.
Nabeel Rehemtulla, Monica Valluri, and Eugene Vasiliev. Non-parametric spherical Jeans mass estimation with B-splines. Monthly Notices of the Royal Astronomical Society, 511(4):5536–5549, April 2022. URL: https://doi.org/10.1093/mnras/stac400 (visited on 2025-01-04), doi:10.1093/mnras/stac400.
Mahmood Safaei, Maha Driss, Wadii Boulila, Elankovan A. Sundararajan, and Mitra Safaei. Global outliers detection in wireless sensor networks: A novel approach integrating time‐series analysis, entropy, and random forest‐based classification. Software: Practice and Experience, 52(1):277–295, January 2022. URL: https://onlinelibrary.wiley.com/doi/10.1002/spe.3020, doi:10.1002/spe.3020.
William E. Schiesser. Spline Collocation Methods for Partial Differential Equations: With Applications in R. John Wiley & Sons, May 2017. ISBN 978-1-119-30103-5. Google-Books-ID: rB61DgAAQBAJ.
David A. Schmidt, Mohammad S. Khan, and Brian T. Bennett. Spline Based Intrusion Detection in Vehicular Ad Hoc Networks (VANET). In 2019 SoutheastCon, 1–5. April 2019. ISSN: 1558-058X. URL: https://ieeexplore.ieee.org/document/9020367 (visited on 2025-01-04), doi:10.1109/SoutheastCon42311.2019.9020367.
I. J. Schoenberg. Cardinal Spline Interpolation. SIAM, January 1973. ISBN 978-0-89871-009-0. Google-Books-ID: O3ipetjS_64C.
Rianne M Schouten, Davina Zamanzadeh, and Prabhant Singh. Pyampute: a python library for data amputation. August 2022. URL: https://doi.org/10.25080/majora-212e5952-03e, doi:10.25080/majora-212e5952-03e.
Neil C Schwertman, Margaret Ann Owens, and Robiah Adnan. A simple more general boxplot method for identifying outliers. Computational Statistics & Data Analysis, 47(1):165–174, August 2004. doi:10.1016/j.csda.2003.10.012.
Kazuhide Shigemi, Shoichi Koyama, Tomohiko Nakamura, and Hiroshi Saruwatari. Physics-Informed Convolutional Neural Network with Bicubic Spline Interpolation for Sound Field Estimation. In 2022 International Workshop on Acoustic Signal Enhancement (IWAENC), 1–5. September 2022. URL: https://ieeexplore.ieee.org/document/9914792 (visited on 2025-01-04), doi:10.1109/IWAENC53105.2022.9914792.
Robert H. Shumway and David S. Stoffer. Time Series Analysis and Its Applications: With R Examples. Springer Texts in Statistics. Springer Nature Switzerland, Cham, 2025. ISBN 978-3-031-70583-0 978-3-031-70584-7. doi:10.1007/978-3-031-70584-7.
Andrew Smith and Charles Elkan. A Bayesian network framework for reject inference. In Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining, 286–295. Seattle WA USA, August 2004. ACM. doi:10.1145/1014052.1014085.
Chuyuan Tao, Sheng Cheng, Fanxin Wang, Yang Zhao, and Naira Hovakimyan. An Optimization-Based Planner with B-spline Parameterized Continuous-Time Reference Signals. In 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 3100–3107. October 2024. ISSN: 2153-0866. URL: https://ieeexplore.ieee.org/document/10802083 (visited on 2025-01-04), doi:10.1109/IROS58592.2024.10802083.
Kailin Tong, Berin Dikic, Wenbo Xiao, Martin Steinberger, Martin Horn, and Selim Solmaz. Safety Metric Aware Trajectory Repairing for Automated Driving. August 2024. arXiv:2408.10622 [cs]. URL: http://arxiv.org/abs/2408.10622 (visited on 2025-01-04), doi:10.48550/arXiv.2408.10622.
Charles Truong, Laurent Oudre, and Nicolas Vayatis. Selective review of offline change point detection methods. Signal Processing, 167:107299, February 2020. URL: https://linkinghub.elsevier.com/retrieve/pii/S0165168419303494, doi:10.1016/j.sigpro.2019.107299.
Ruey S. Tsay. Outliers, level shifts, and variance changes in time series. Journal of Forecasting, 7(1):1–20, January 1988. URL: https://onlinelibrary.wiley.com/doi/10.1002/for.3980070102, doi:10.1002/for.3980070102.
John Wilder Tukey. Exploratory data analysis. Addison-Wesley series in behavioral science. Addison-Wesley publ, Reading (Mass.) Menlo Park (Calif.) London [etc.], 1977. ISBN 978-0-201-07616-5.
Antony Unwin. Graphical Data Analysis with R. Chapman and Hall/CRC, 1 edition, September 2018. ISBN 978-1-315-37008-8. URL: https://www.taylorfrancis.com/books/9781315362298 (visited on 2025-12-29), doi:10.1201/9781315370088.
Wouter van Loon, Marjolein Fokkema, Frank de Vos, Marisa Koini, Reinhold Schmidt, and Mark de Rooij. Imputation of missing values in multi-view data. Information Fusion, 111:102524, November 2024. URL: https://www.sciencedirect.com/science/article/pii/S1566253524003026 (visited on 2024-12-31), doi:10.1016/j.inffus.2024.102524.
Janani Venugopalan, Nikhil Chanani, Kevin Maher, and May D. Wang. Novel Data Imputation for Multiple Types of Missing Data in Intensive Care Units. IEEE Journal of Biomedical and Health Informatics, 23(3):1243–1250, May 2019. doi:10.1109/JBHI.2018.2883606.
Gajendra K. Vishwakarma, Chinmoy Paul, and A.M. Elsawah. An algorithm for outlier detection in a time series model using backpropagation neural network. Journal of King Saud University - Science, 32(8):3328–3336, December 2020. URL: https://jksus.org/an-algorithm-for-outlier-detection-in-a-time-series-model-using-backpropagation-neural-network/, doi:10.1016/j.jksus.2020.09.018.
Yohannis Alemayehu Wakjira and Gemechis File Duressa. Exponential spline method for singularly perturbed third-order boundary value problems. Demonstratio Mathematica, 53(1):360–372, January 2020. Publisher: De Gruyter Open Access. URL: https://www.degruyter.com/document/doi/10.1515/dema-2020-0024/html (visited on 2025-01-04), doi:10.1515/dema-2020-0024.
Yuedong Wang. Smoothing Splines: Methods and Applications. CRC Press, June 2011. ISBN 978-1-4200-7756-8. Google-Books-ID: NH5Spn0yru4C.
Qingsong Wen, Jingkun Gao, Xiaomin Song, Liang Sun, Huan Xu, and Shenghuo Zhu. RobustSTL: A Robust Seasonal-Trend Decomposition Algorithm for Long Time Series. Proceedings of the AAAI Conference on Artificial Intelligence, 33(01):5409–5416, July 2019. doi:10.1609/aaai.v33i01.33015409.
Qingsong Wen, Zhe Zhang, Yan Li, and Liang Sun. Fast RobustSTL: Efficient and Robust Seasonal-Trend Decomposition for Time Series with Complex Patterns. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2203–2213. Virtual Event CA USA, August 2020. ACM. doi:10.1145/3394486.3403271.
Colin Wilcox, Vasileios Giagos, and Soufiene Djahel. A Neighborhood-Similarity-Based Imputation Algorithm for Healthcare Data Sets: A Comparative Study. Electronics, 12(23):4809, November 2023. doi:10.3390/electronics12234809.
M. B. Wilk and R. Gnanadesikan. Probability plotting methods for the analysis of data. Biometrika, 55(1):1–17, March 1968.
Machelle D. Wilson and Kerstin Lueck. Working with Missing Data: Imputation of Nonresponse Items in Categorical Survey Data with a Non-Monotone Missing Pattern. Journal of Applied Mathematics, 2014(1):368791, 2014. doi:10.1155/2014/368791.
Suorong Yang, Geng Zhang, Jian Zhao, and Furao Shen. A Simple Geometric-Aware Indoor Positioning Interpolation Algorithm Based on Manifold Learning. November 2023. arXiv:2311.15583 [cs]. URL: http://arxiv.org/abs/2311.15583 (visited on 2025-01-04), doi:10.48550/arXiv.2311.15583.
Statsmodels Developers. Statsmodels api reference. https://www.statsmodels.org/stable/api.html, 2023. [Online; accessed 01-August-2023].