4.2. NumPy Function Reference and Usage Examples#

4.2.1. Array Creation Functions#

Array Creation Functions in NumPy are fundamental for initializing arrays with various contents and shapes. These functions simplify tasks such as creating arrays filled with specific values like zeros and ones or reshaping arrays to suit your needs. Explore the table below for clear descriptions and practical examples of each function [Harris et al., 2020, NumPy Developers, 2023].

Table 4.5 lists common array creation functions in NumPy, describing their purposes and providing example usages. You can access a comprehensive list of functions and their usage by visiting the following link: Numpy Array Manipulation Routines.

Table 4.5 Common NumPy Array Creation Functions and Their Usage#

Function

Description

Example

numpy.array

Create an array from a Python list or tuple.

np.array([1, 2, 3])

numpy.zeros

Create an array filled with zeros.

np.zeros((3, 3))

numpy.ones

Create an array filled with ones.

np.ones((2, 4))

numpy.empty

Create an uninitialized array.

np.empty((2, 2))

numpy.arange

Create an array with evenly spaced values.

np.arange(0, 10, 2)

numpy.linspace

Create an array with evenly spaced values over a range.

np.linspace(0, 1, 5)

numpy.eye

Create a 2-D array with ones on the diagonal.

np.eye(3)

numpy.reshape

Reshape an array to a specified shape.

np.reshape(array, (2, 3))

numpy.transpose

Permute the dimensions of an array.

np.transpose(array)

import numpy as np
import pprint

def print_bold(txt):
    print("\033[1m" + txt + "\033[0m")

# Create an array from a Python list or tuple
arr = np.array([1, 2, 3])
print_bold("Array from a Python list or tuple:")
pprint.pprint(arr)

# Create an array filled with zeros
zeros_array = np.zeros((3, 3))
print_bold("\nArray filled with zeros:")
pprint.pprint(zeros_array)

# Create an array filled with ones
ones_array = np.ones((2, 4))
print_bold("\nArray filled with ones:")
pprint.pprint(ones_array)

# Create an uninitialized array
empty_array = np.empty((2, 2))
print_bold("\nUninitialized array:")
pprint.pprint(empty_array)

# Create an array with evenly spaced values
arange_array = np.arange(0, 10, 2)
print_bold("\nArray with evenly spaced values:")
pprint.pprint(arange_array)

# Create an array with evenly spaced values over a range
linspace_array = np.linspace(0, 1, 5)
print_bold("\nArray with evenly spaced values over a range:")
pprint.pprint(linspace_array)

# Create a 2-D array with ones on the diagonal
eye_array = np.eye(3)
print_bold("\n2-D array with ones on the diagonal:")
pprint.pprint(eye_array)

# Reshape an array to a specified shape
original_array = np.array([1, 2, 3, 4, 5, 6])
reshaped_array = np.reshape(original_array, (2, 3))
print_bold("\nReshaped array:")
pprint.pprint(reshaped_array)

# Permute the dimensions of an array
array_to_permute = np.array([[1, 2], [3, 4], [5, 6]])
transposed_array = np.transpose(array_to_permute)
print_bold("\nTransposed array:")
pprint.pprint(transposed_array)
Array from a Python list or tuple:
array([1, 2, 3])

Array filled with zeros:
array([[0., 0., 0.],
       [0., 0., 0.],
       [0., 0., 0.]])

Array filled with ones:
array([[1., 1., 1., 1.],
       [1., 1., 1., 1.]])

Uninitialized array:
array([[4.98131536e+151, 8.92879958e+271],
       [1.71898015e+161, 9.13606230e+242]])

Array with evenly spaced values:
array([0, 2, 4, 6, 8])

Array with evenly spaced values over a range:
array([0.  , 0.25, 0.5 , 0.75, 1.  ])

2-D array with ones on the diagonal:
array([[1., 0., 0.],
       [0., 1., 0.],
       [0., 0., 1.]])

Reshaped array:
array([[1, 2, 3],
       [4, 5, 6]])

Transposed array:
array([[1, 3, 5],
       [2, 4, 6]])

Note

Creating an uninitialized array means allocating memory space for an array without initializing its elements to specific values. In other words, the values within the array are not set to any particular initial values like zeros, ones, or any other predefined values.

When you create an uninitialized array, the values in the array will contain whatever data happened to be in that memory location before, which could be any random or undefined data. This can be useful in situations where you plan to fill the array with values later in your code, and you want to save the time it takes to initialize all the elements to a specific value.

However, it’s essential to note that using an uninitialized array can lead to unpredictable behavior if you try to use its values before assigning meaningful data to them. Therefore, it’s crucial to initialize the array’s elements explicitly if you rely on specific initial values for your computations.

4.2.2. Array Manipulation Functions#

Array Manipulation Functions in NumPy provide essential tools for modifying and combining arrays. These functions enable you to concatenate arrays along specified axes, stack arrays to create new dimensions, and split arrays into multiple sub-arrays. Explore the table below for detailed descriptions and practical examples of each function [Harris et al., 2020, NumPy Developers, 2023].

Table 4.6 lists common array manipulation functions in NumPy, describing their purposes and providing example usages. You can access an extensive list of functions and their usage by visiting the following link: Numpy Array Manipulation Routines.

Table 4.6 Common NumPy Array Manipulation Functions and Their Usage#

Function

Description

Example

numpy.concatenate

Join arrays along a specified axis.

np.concatenate((array1, array2), axis=0)

numpy.stack

Join arrays along a new axis.

np.stack((array1, array2))

numpy.split

Split an array into multiple sub-arrays.

np.split(array, 4)

# Create arrays for manipulation
array1 = np.array([[1, 2], [3, 4]])
array2 = np.array([[5, 6], [7, 8]])

# Join arrays along a specified axis
concatenated_array = np.concatenate((array1, array2), axis=0)
print_bold("Concatenated Arrays:")
pprint.pprint(concatenated_array)

# Join arrays along a new axis
stacked_array = np.stack((array1, array2))
print_bold("\nStacked Arrays:")
pprint.pprint(stacked_array)

# Split an array into multiple sub-arrays
array_to_split = np.array([1, 2, 3, 4, 5, 6, 7, 8])
split_arrays = np.split(array_to_split, 4)
print_bold("\nSplit Arrays:")
for i, sub_array in enumerate(split_arrays):
    print(f"Split Array {i + 1}:")
    pprint.pprint(sub_array)
Concatenated Arrays:
array([[1, 2],
       [3, 4],
       [5, 6],
       [7, 8]])

Stacked Arrays:
array([[[1, 2],
        [3, 4]],

       [[5, 6],
        [7, 8]]])

Split Arrays:
Split Array 1:
array([1, 2])
Split Array 2:
array([3, 4])
Split Array 3:
array([5, 6])
Split Array 4:
array([7, 8])

4.2.3. Element-wise Operations#

These functions include addition, subtraction, multiplication, division, exponential calculations, natural logarithms, square roots, and trigonometric functions like sine and cosine. Explore the table below for in-depth descriptions and practical examples of each operation [Harris et al., 2020, NumPy Developers, 2023].

Table 4.7 lists common element-wise operations in NumPy, describing their purposes and providing example usages. You can access a comprehensive list of functions and their usage by referring to the following link: Numpy Mathematical Functions.

Table 4.7 Common Element-wise Operations in NumPy#

Function

Description

Example

numpy.add

Element-wise addition of two arrays.

np.add(array1, array2)

numpy.subtract

Element-wise subtraction of two arrays.

np.subtract(array1, array2)

numpy.multiply

Element-wise multiplication of two arrays.

np.multiply(array1, array2)

numpy.divide

Element-wise division of two arrays.

np.divide(array1, array2)

numpy.exp

Element-wise exponential function.

np.exp(array)

numpy.log

Element-wise natural logarithm.

np.log(array)

numpy.sqrt

Element-wise square root.

np.sqrt(array)

numpy.sin

Element-wise sine function.

np.sin(array)

numpy.cos

Element-wise cosine function.

np.cos(array)

# Create arrays for element-wise operations
array1 = np.array([1, 2, 3])
array2 = np.array([4, 5, 6])

# Element-wise addition of two arrays
addition_result = np.add(array1, array2)
print_bold("Element-wise Addition:")
pprint.pprint(addition_result)

# Element-wise subtraction of two arrays
subtraction_result = np.subtract(array1, array2)
print_bold("\nElement-wise Subtraction:")
pprint.pprint(subtraction_result)

# Element-wise multiplication of two arrays
multiplication_result = np.multiply(array1, array2)
print_bold("\nElement-wise Multiplication:")
pprint.pprint(multiplication_result)

# Element-wise division of two arrays
division_result = np.divide(array1, array2)
print_bold("\nElement-wise Division:")
pprint.pprint(division_result)

# Element-wise exponential function
exp_result = np.exp(array1)
print_bold("\nElement-wise Exponential:")
pprint.pprint(exp_result)

# Element-wise natural logarithm
log_result = np.log(array1)
print_bold("\nElement-wise Natural Logarithm:")
pprint.pprint(log_result)

# Element-wise square root
sqrt_result = np.sqrt(array1)
print_bold("\nElement-wise Square Root:")
pprint.pprint(sqrt_result)

# Element-wise sine function
sin_result = np.sin(array1)
print_bold("\nElement-wise Sine Function:")
pprint.pprint(sin_result)

# Element-wise cosine function
cos_result = np.cos(array1)
print_bold("\nElement-wise Cosine Function:")
pprint.pprint(cos_result)
Element-wise Addition:
array([5, 7, 9])

Element-wise Subtraction:
array([-3, -3, -3])

Element-wise Multiplication:
array([ 4, 10, 18])

Element-wise Division:
array([0.25, 0.4 , 0.5 ])

Element-wise Exponential:
array([ 2.71828183,  7.3890561 , 20.08553692])

Element-wise Natural Logarithm:
array([0.        , 0.69314718, 1.09861229])

Element-wise Square Root:
array([1.        , 1.41421356, 1.73205081])

Element-wise Sine Function:
array([0.84147098, 0.90929743, 0.14112001])

Element-wise Cosine Function:
array([ 0.54030231, -0.41614684, -0.9899925 ])

4.2.4. Statistical and Mathematical Functions#

You can calculate the dot product, sum, mean, standard deviation, minimum, and maximum values of arrays. Additionally, perform element-wise comparisons, logical operations, and even conditional selection of elements. Dive into the table below for comprehensive descriptions and practical examples of each function [Harris et al., 2020, NumPy Developers, 2023].

Table 4.8 lists common statistical and mathematical functions in NumPy, describing their purposes and providing example usages. You can access a comprehensive list of functions and their usage by referring to the following link: Numpy Mathematical Functions.

Table 4.8 Common Statistical and Mathematical Functions in NumPy#

Function

Description

Example

numpy.dot

Dot product of two arrays.

np.dot(array1, array2)

numpy.prod

Product of array elements.

np.prod(array)

numpy.sum

Sum of array elements.

np.sum(array)

numpy.mean

Mean (average) of array elements.

np.mean(array)

numpy.median

Median value of an array.

np.median(array)

numpy.std

Standard deviation of array elements.

np.std(array)

numpy.min

Minimum value in an array.

np.min(array)

numpy.max

Maximum value in an array.

np.max(array)

numpy.equal

Element-wise comparison of two arrays for equality.

np.equal(array1, array2)

numpy.logical_and

Element-wise logical AND of two arrays.

np.logical_and(array1, array2)

numpy.where

Return elements chosen from two arrays depending on a condition.

np.where(condition, x, y)

numpy.argmax

Index of the maximum value in an array.

np.argmax(array)

numpy.argmin

Index of the minimum value in an array.

np.argmin(array)

numpy.histogram

Compute the histogram of a set of data.

np.histogram(array, bins=10)

numpy.percentile

Compute the q-th percentile of the data.

np.percentile(array, q=25)

Remark

  1. Mean (numpy.mean):

    • The mean, also known as the average, is a measure of central tendency.

    • Mathematically, it is calculated as the sum of all values in an array divided by the total number of values.

    • In NumPy, one can compute the mean using the numpy.mean function:

      mean = np.mean(array)
      

    Mathematically, the mean (\(\mu\)) is defined as

    (4.1)#\[\begin{equation}\mu = \frac{\sum{x}}{N}\end{equation}\]

    Where:

    • \(\mu\) is the mean,

    • \(\sum{x}\) represents the sum of all values in the array, and

    • \(N\) is the total number of values in the array.

    For more details, refer to this link.

  2. Median (numpy.median):

    • The median is another measure of central tendency and is the middle value of a sorted dataset.

    • For an odd number of values, it’s the middle value. For an even number of values, it’s the average of the two middle values.

    • In NumPy, you can compute the median using the numpy.median function:

      median = np.median(array)
      

    Mathematically, the median is defined as the middle value of a dataset after sorting. If there are N values:

    • For odd N, the median is the value at position \((N + 1) / 2\).

    • For even N, the median is the average of the values at positions \(N / 2\) and \((N / 2) + 1\) after sorting.

    For more details, please see this link.

  3. Standard Deviation (numpy.std):

    • The standard deviation measures the dispersion or spread of data points in a dataset.

    • It quantifies how much individual data points deviate from the mean.

    • In NumPy, you can compute the standard deviation using the numpy.std function:

      std_deviation = np.std(array)
      

    Mathematically, the standard deviation (\(\sigma\)) is defined as:

    (4.2)#\[\begin{equation}\sigma = \sqrt{\frac{\sum{(x - \mu)^2}}{N - ddof}}\end{equation}\]

    Where:

    • \(\sigma\) is the standard deviation,

    • \(\sum{(x - \mu)^2}\) represents the sum of squared differences between each value (x) and the mean (μ),

    • \(N\) is the total number of values in the array, and

    • ddof represents the degrees of freedom. The default value is zero.

    For more details, please see this link.

  4. Histogram (numpy.histogram):

    • numpy.histogram is a function used to compute the histogram of a dataset, which is a representation of the distribution of data.

    • It divides the data into bins or intervals and counts the number of data points that fall into each bin.

    To create a histogram with ‘bins’ number of intervals:

    • Determine the range of your data, usually from the minimum (min_x) to the maximum (max_x) value in your dataset.

    • Divide the range into ‘bins’ equally spaced intervals.

    • Count how many data points from your dataset fall into each interval.

  5. Percentile (numpy.percentile):

    • numpy.percentile is a function used to calculate the nth percentile of a dataset, which is a measure of relative standing within the data.

    • Percentiles divide the data into 100 equal parts, and the nth percentile represents the value below which ‘n’ percent of the data falls.

    To find the pth percentile of a dataset x:

    • Sort the data in ascending order.

    • Calculate the rank (position) of the percentile value using the formula:

      (4.3)#\[\begin{equation}Rank = \left(\frac{p}{100}\right) \cdot (N + 1)\end{equation}\]

      Where \(N\) is the total number of data points.

    • If the rank is an integer, the percentile value is the value at that rank in the sorted data.

    • If the rank is not an integer, interpolate between the values at the floor(rank) and ceil(rank) positions.

    For example, the 50th percentile is the median, which is the value below which 50% of the data falls.

Note

The standard deviation is a measure of how data points deviate from the mean. In NumPy, it is typically calculated as the average squared deviation using the formula x.sum() / N, where N is the number of data points in the array x (N = len(x)). However, when the ‘ddof’ (Delta Degrees of Freedom) parameter is specified, it adjusts the divisor. Specifically, it becomes N - ddof.

In standard statistical practice, setting ddof=1 is often used to obtain an unbiased estimator of the variance for an infinite population (a sample of a population). Alternatively, setting ddof=0 provides a maximum likelihood estimate of the variance, assuming normally distributed variables.

It’s important to note that the standard deviation is the square root of the estimated variance. Even when using ddof=1 for an unbiased variance estimate, the resulting standard deviation may not be an entirely unbiased estimate in itself.

# Create arrays for statistical and mathematical operations
array1 = np.array([1, 2, 3, 4, 5])
array2 = np.array([5, 4, 3, 2, 1])

# Dot product of two arrays
dot_product = np.dot(array1, array2)
print_bold("Dot Product of Arrays:")
pprint.pprint(dot_product)

# Product of array elements
product_result = np.prod(array1)
print_bold("\nProduct of Array Elements:")
pprint.pprint(product_result)

# Sum of array elements
sum_result = np.sum(array1)
print_bold("\nSum of Array Elements:")
pprint.pprint(sum_result)

# Mean (average) of array elements
mean_result = np.mean(array1)
print_bold("\nMean (Average) of Array Elements:")
pprint.pprint(mean_result)

# Median of array elements
median_result = np.median(array1)
print_bold("\nmedian of Array Elements:")
pprint.pprint(median_result)

# Standard deviation of array elements
std_deviation = np.std(array1)
print_bold("\nStandard Deviation of Array Elements:")
pprint.pprint(std_deviation)

# Minimum value in an array
min_value = np.min(array1)
print_bold("\nMinimum Value in Array:")
pprint.pprint(min_value)

# Maximum value in an array
max_value = np.max(array1)
print_bold("\nMaximum Value in Array:")
pprint.pprint(max_value)

# Element-wise comparison of two arrays for equality
equal_result = np.equal(array1, array2)
print_bold("\nElement-wise Comparison for Equality:")
pprint.pprint(equal_result)

# Element-wise logical AND of two arrays
logical_and_result = np.logical_and(array1 > 2, array2 < 4)
print_bold("\nElement-wise Logical AND:")
pprint.pprint(logical_and_result)

# Return elements chosen from two arrays depending on a condition
condition = (array1 > 2)
where_result = np.where(condition, array1, array2)
print_bold("\nElements Chosen Based on Condition:")
pprint.pprint(where_result)

# Index of the maximum value in an array
argmax_result = np.argmax(array1)
print_bold("\nIndex of Maximum Value:")
pprint.pprint(argmax_result)

# Index of the minimum value in an array
argmin_result = np.argmin(array1)
print_bold("\nIndex of Minimum Value:")
pprint.pprint(argmin_result)

# Compute the histogram of a set of data
data = np.array([1, 2, 2, 3, 3, 3, 4, 4, 4, 4])
histogram, bins = np.histogram(data, bins=4)
print_bold("\nHistogram:")
pprint.pprint(histogram)
print_bold("\nBins:")
pprint.pprint(bins)

# Compute the q-th percentile of the data
percentile = np.percentile(data, q=25)
print_bold("\n25th Percentile:")
pprint.pprint(percentile)
Dot Product of Arrays:
35

Product of Array Elements:
120

Sum of Array Elements:
15

Mean (Average) of Array Elements:
3.0

median of Array Elements:
3.0

Standard Deviation of Array Elements:
1.4142135623730951

Minimum Value in Array:
1

Maximum Value in Array:
5

Element-wise Comparison for Equality:
array([False, False,  True, False, False])

Element-wise Logical AND:
array([False, False,  True,  True,  True])

Elements Chosen Based on Condition:
array([5, 4, 3, 4, 5])

Index of Maximum Value:
4

Index of Minimum Value:
0

Histogram:
array([1, 2, 3, 4], dtype=int64)

Bins:
array([1.  , 1.75, 2.5 , 3.25, 4.  ])

25th Percentile:
2.25

Remark

NumPy’s np.where() function offers versatile capabilities for performing conditional operations and obtaining specific results based on conditions. Here are several distinct usages of np.where():

  1. Basic Usage:

    import numpy as np
    arr = np.arange(1, 8, 1)
    condition = arr > 3
    indices = np.where(condition)
    print(indices)
    

    Output: (array([3, 4, 5, 6], dtype=int64),)

    In this fundamental example, np.where() is employed to locate the indices where the condition arr > 3 is satisfied. As a result, it returns the array indices [3, 4, 5, 6], indicating the positions where the condition holds true within the original array.

  2. Return Values Based on Conditions:

    import numpy as np
    arr = np.arange(1, 8, 1)
    result = np.where(arr > 3, 'Yes', 'No')
    print(result)
    

    Output: ['No' 'No' 'No' 'Yes' 'Yes' 'Yes' 'Yes']

    In this usage, np.where() takes a condition, arr > 3, and returns ‘Yes’ when the condition is met (i.e., when elements are greater than 3) and ‘No’ otherwise. This provides a convenient way to generate an array of values based on the condition.

  3. Using Multiple Conditions:

    import numpy as np
    arr = np.arange(1, 8, 1)
    result = np.where((arr > 2) & (arr < 5), 'In Range', 'Out of Range')
    print(result)
    

    Output: ['Out of Range' 'Out of Range' 'In Range' 'In Range' 'Out of Range' 'Out of Range' 'Out of Range']

    In this scenario, np.where() allows the combination of two conditions, (arr > 2) and (arr < 5), and returns ‘In Range’ when both conditions are satisfied. Conversely, it returns ‘Out of Range’ when the conditions are not met.

  4. Show Array Values Based on Conditions:

    import numpy as np
    arr = np.arange(1, 8, 1)
    print(arr[np.where(arr > 3)])
    

    Output: [4 5 6 7]

    In this usage, np.where() is used to identify the positions in the array where the condition arr > 3 is true, and subsequently, the values at those positions are displayed. This facilitates the display of array elements that meet a specific condition, such as values greater than 3.

4.2.5. Linear Algebra Functions#

You can resize arrays to specific shapes, compute matrix inverses, determinants, eigenvalues, and singular value decompositions. Additionally, solve linear matrix equations with ease. Explore the table below for comprehensive descriptions and practical examples of each function [Harris et al., 2020, NumPy Developers, 2023]:

Table 4.9 lists common linear algebra functions in NumPy, describing their purposes and providing example usages. You can access an extensive list of functions and their usage related to linear algebra by visiting the following link: Numpy Linear Algebra Functions.

Table 4.9 Common Linear Algebra Functions in NumPy#

Function

Description

Example

numpy.resize

Resize an array to a specified shape.

np.resize(array, (3, 3))

numpy.linalg.inv

Compute the multiplicative inverse of a matrix.

np.linalg.inv(matrix)

numpy.linalg.det

Compute the determinant of a matrix.

np.linalg.det(matrix)

numpy.linalg.eig

Compute the eigenvalues and right eigenvectors of a square array.

np.linalg.eig(matrix)

numpy.linalg.svd

Singular value decomposition of a matrix.

np.linalg.svd(matrix)

numpy.linalg.solve

Solve a linear matrix equation.

np.linalg.solve(matrix, vector)

# Create arrays and matrices for matrix operations
array = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
matrix = np.array([[1, 2], [3, 4]])
vector = np.array([1, 2])

# Resize an array to a specified shape
resized_array = np.resize(array, (3, 3))
print_bold("Resized Array:")
pprint.pprint(resized_array)

# Compute the multiplicative inverse of a matrix
matrix_inverse = np.linalg.inv(matrix)
print_bold("\nMatrix Inverse:")
pprint.pprint(matrix_inverse)

# Compute the determinant of a matrix
matrix_determinant = np.linalg.det(matrix)
print_bold("\nMatrix Determinant:")
pprint.pprint(matrix_determinant)

# Compute the eigenvalues and right eigenvectors of a square array
eigenvalues, eigenvectors = np.linalg.eig(array)
print_bold("\nEigenvalues:")
pprint.pprint(eigenvalues)
print_bold("\nEigenvectors:")
pprint.pprint(eigenvectors)

# Singular value decomposition of a matrix
U, S, VT = np.linalg.svd(matrix)
print_bold("\nSingular Value Decomposition (SVD):")
print("U:")
pprint.pprint(U)
print("S:")
pprint.pprint(S)
print("VT:")
pprint.pprint(VT)

# Solve a linear matrix equation
solution = np.linalg.solve(matrix, vector)
print_bold("\nLinear Equation Solution:")
pprint.pprint(solution)
Resized Array:
array([[1, 2, 3],
       [4, 5, 6],
       [7, 8, 9]])

Matrix Inverse:
array([[-2. ,  1. ],
       [ 1.5, -0.5]])

Matrix Determinant:
-2.0000000000000004

Eigenvalues:
array([ 1.61168440e+01, -1.11684397e+00, -4.22209278e-16])

Eigenvectors:
array([[-0.23197069, -0.78583024,  0.40824829],
       [-0.52532209, -0.08675134, -0.81649658],
       [-0.8186735 ,  0.61232756,  0.40824829]])

Singular Value Decomposition (SVD):
U:
array([[-0.40455358, -0.9145143 ],
       [-0.9145143 ,  0.40455358]])
S:
array([5.4649857 , 0.36596619])
VT:
array([[-0.57604844, -0.81741556],
       [ 0.81741556, -0.57604844]])

Linear Equation Solution:
array([0. , 0.5])

4.2.6. Random Number Generation#

You can generate random values, integers, and sample elements from arrays. Explore the table below for comprehensive descriptions and practical examples of each function [Harris et al., 2020, NumPy Developers, 2023]:

Table 4.10 lists common random number generation in NumPy, describing their purposes and providing example usages. You can access an extensive list of functions and their usage related to random sampling by visiting the following link: Numpy Random Sampling Functions.

Table 4.10 Common Random Number Generation in NumPy#

Function

Description

Example

numpy.random.rand

Random values in a given shape between 0 and 1.

np.random.rand(3, 3)

numpy.random.randint

Random integers from low (inclusive) to high (exclusive).

np.random.randint(1, 100, size=(2, 2))

numpy.random.choice

Randomly sample elements from an array.

np.random.choice(array, size=3, replace=False)

# Generate random values
random_values = np.random.rand(3, 3)
print_bold("Random Values (between 0 and 1):")
pprint.pprint(random_values)

# Generate random integers
random_integers = np.random.randint(1, 100, size=(2, 2))
print_bold("\nRandom Integers (between 1 and 99):")
pprint.pprint(random_integers)

# Randomly sample elements from an array
array = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
random_samples = np.random.choice(array, size=3, replace=False)
print_bold("\nRandomly Sampled Elements:")
pprint.pprint(random_samples)
Random Values (between 0 and 1):
array([[0.76114221, 0.21728275, 0.96467895],
       [0.98238136, 0.82378329, 0.19562743],
       [0.03311135, 0.99307971, 0.43018769]])

Random Integers (between 1 and 99):
array([[66, 95],
       [41, 33]])

Randomly Sampled Elements:
array([8, 6, 3])