The Wave Equation in Time Domain

The wave equation in time domain can be stated as follows, \begin{equation} \frac{\partial^2 u}{\partial t^2}=c^2 \nabla^2 u+f,\qquad x\in \Omega \subset \mathbb{R}^d,~t\in(T_1,T_2] \end{equation} where $\Delta$ is the Laplacian, $f$ is a forcing function (for example our source) and $c$ is the wave velocity at which the time and spatially varying wave $u$ propagates.

A Fourth-Order Finite-Difference Method for
the One Dimensional Wave Equation in Time Domain

A one-dimensional form of the wave equation presented can be found as follows, \begin{align} \begin{cases} \dfrac{\partial^2 u}{\partial t^2} = c^2(x) \dfrac{\partial^2 u}{\partial x^2}+f(x,t),&(x,t)\in (a,b)\times(T_1,T_2],\\ u(x,T_1)=g(x),&x\in [a,b],\\ \dfrac{\partial }{\partial t}u(x,T_1) = h(x),&x\in [a,b],\\ u(a,t) = f_a(t),&t \in[T_1,T_2],\\ u(b,t) = f_b(t),&t \in[T_1,T_2]. \end{cases} \end{align}

The following notations are introduced to generate an algorithm for the problem,

A higher-order scheme can be introduced as follows (the readers are encouraged to see [3], \begin{align} \label{eq1A5.01}\left(1+\frac{1^2}{12}\delta_t^2\right)^{-1}\frac{\delta_t^2}{\tau^2} u_{i}^{n}= c^2_i \left(1+\frac{1}{12}\delta_x^2\right)^{-1}\frac{\delta_x^2}{h^2} u_{i}^{n}+f_{i}^{n}, \end{align} where it will be shown that this scheme is 4th-order.

In this section, the scheme is analyzed and also an numerical algorithm is generated. This equation can be also written in the following form, \begin{align} \left(1+\frac{1}{12}\delta_x^2\right)\frac{\delta_t^2}{\tau^2} \frac{u_{i}^{n}}{c^2_i}= \left(1+\frac{1}{12}\delta_t^2\right)\frac{\delta_x^2}{h^2} u_{i}^{n} +\left(1+\frac{1}{12}\delta_t^2\right)\left(1+\frac{1}{12}\delta_x^2\right)\frac{f_{i}^{n}}{c^2_i}. \end{align} The left hand side of the equation (13) can be expanded as follows, \begin{align} \left(1+\frac{1}{12}\delta_x^2\right)\frac{\delta_t^2}{\tau^2} \frac{u_{i}^{n}}{c^2_i}= \frac{1}{12\tau^2}\left[ \left(\frac{u_{i+1}^{n+1}}{c^2_{i+1}}+10 \frac{u_{i}^{n+1}}{c^2_{i}} + \frac{u_{i-1}^{n+1}}{c^2_{i-1}}\right) -2\left(\frac{u_{i+1}^{n}}{c^2_{i+1}}+10 \frac{u_{i}^{n}}{c^2_{i}} + \frac{u_{i-1}^{n}}{c^2_{i-1}}\right) +\left(\frac{u_{i+1}^{n-1}}{c^2_{i+1}}+10 \frac{u_{i}^{n-1}}{c^2_{i}} + \frac{u_{i-1}^{n-1}}{c^2_{i-1}}\right)\right]. \end{align}

It follows that, \begin{align} \left[\frac{u_{i+1}^{n+1}}{c^2_{i+1}}+10 \frac{u_{i}^{n+1}}{c^2_{i}} + \frac{u_{i-1}^{n+1}}{c^2_{i-1}}\right] &-2 \left[\frac{u_{i+1}^{n}}{c^2_{i+1}}+10 \frac{u_{i}^{n}}{c^2_{i}} + \frac{u_{i-1}^{n}}{c^2_{i-1}}\right] +\left[\frac{u_{i+1}^{n-1}}{c^2_{i+1}}+10 \frac{u_{i}^{n-1}}{c^2_{i}} + \frac{u_{i-1}^{n-1}}{c^2_{i-1}}\right]= \lambda^2\left[u_{i+1}^{n+1}-2 u_{i}^{n+1} + u_{i-1}^{n+1}\right] \notag\\ & +10\lambda^2\left[u_{i+1}^{n}-2u_{i}^{n} + u_{i-1}^{n}\right] +\lambda^2 \left[u_{i+1}^{n-1}-2u_{i}^{n-1} + u_{i-1}^{n-1}\right] +\tau^2\mathbf{F}_{i}^{n}. \end{align}

where $$\mathbf{F}_{i}^{n}= \frac{1}{144}\left[\frac{1}{c^2_{i+1}}\left(f_{i+1}^{n+1}+10 f_{i+1}^{n}+f_{i+1}^{n-1}\right) +\frac{10}{c^2_{i}}(f_{i}^{n+1}+10f_{i}^{n}+f_{i}^{n-1})+\frac{1}{c^2_{i-1}}(f_{i-1}^{n+1}+10f_{i-1}^{n}+f_{i-1}^{n-1})\right] $$ The equation (14) can be simplified as follows,

\begin{align} \left(\frac{1}{c^2_{i+1}}-\lambda^2\right)u_{i+1}^{n+1}&+\left(\frac{10}{c^2_{i}}+2\lambda^2\right)u_{i}^{n+1}+\left(\frac{1}{c^2_{i-1}}-\lambda^2\right)u_{i-1}^{n+1}= \left(\frac{2}{c^2_{i+1}}+10\lambda^2\right)u_{i+1}^{n}+\left(\frac{20}{c^2_{i}}-20\lambda^2\right)u_{i}^{n} +\left(\frac{2}{c^2_{i-1}}+10\lambda^2\right)u_{i-1}^{n} \notag \\ & -\left(\frac{1}{c^2_{i+1}}-\lambda^2\right)u_{i+1}^{n-1} -\left(\frac{10}{c^2_{i}}+2\lambda^2\right)u_{i}^{n-1}-\left(\frac{1}{c^2_{i-1}}-\lambda^2\right)u_{i-1}^{n-1} +\tau^2\mathbf{F}_{i}^{n}. \end{align}

Consider the following matrices, \begin{align} A=\begin{bmatrix} \frac{10}{c^2_{1}}+2\lambda^2 & \frac{1}{c^2_{2}}-\lambda^2 & 0 & 0 &\dots & \dots &0 \\ \frac{1}{c^2_{1}}-\lambda^2 & \frac{10}{c^2_{2}}+2\lambda^2 & \frac{1}{c^2_{3}}-\lambda^2 & 0 & 0 &\dots &\vdots \\ 0 & \frac{1}{c^2_{2}}-\lambda^2 & \frac{10}{c^2_{3}}+2\lambda^2 & \frac{1}{c^2_{4}}-\lambda^2 & 0 & \dots &\vdots \\ 0 & 0& \ddots & \ddots & \ddots & 0 & \vdots \\ \vdots & \dots &0 & \frac{1}{c^2_{M-4}}-\lambda^2 & \frac{10}{c^2_{M-3}}+2\lambda^2 & \frac{1}{c^2_{N_x-2}}-\lambda^2 & 0\\ \vdots & \dots & 0 &0 & \frac{1}{c^2_{M-3}}-\lambda^2 & \frac{10}{c^2_{N_x-2}}+2\lambda^2 & \frac{1}{c^2_{N_x-1}}-\lambda^2 \\ 0 & \dots & \dots & 0 &0 & \frac{1}{c^2_{N_x-2}}-\lambda^2 & \frac{10}{c^2_{N_x-1}}+2\lambda^2\\ \end{bmatrix}, \end{align} \begin{align} B=\begin{bmatrix} \frac{20}{c^2_{1}}-20\lambda^2 & \frac{2}{c^2_{2}}+10\lambda^2 & 0 & 0 &\dots & \dots &0 \\ \frac{2}{c^2_{1}}+10\lambda^2 & \frac{20}{c^2_{2}}-20\lambda^2 & \frac{2}{c^2_{3}}+10\lambda^2 & 0 & 0 &\dots &\vdots \\ 0 & \frac{2}{c^2_{2}}+10\lambda^2 & \frac{20}{c^2_{3}}-20\lambda^2 & \frac{2}{c^2_{4}}+10\lambda^2 & 0 & 0 &\vdots \\ 0 & 0& \ddots & \ddots & \ddots & 0 & \vdots \\ \vdots & \dots &0 & \frac{2}{c^2_{M-4}}+10\lambda^2 & \frac{20}{c^2_{M-3}}-20\lambda^2 & \frac{2}{c^2_{N_x-2}}+10\lambda^2 & 0\\ \vdots & \dots & 0 &0 & \frac{2}{c^2_{M-3}}+10\lambda^2 & \frac{20}{c^2_{N_x-2}}-20\lambda^2 & \frac{2}{c^2_{N_x-1}}+10\lambda^2 \\ 0 & \dots & \dots & 0 &0 & \frac{2}{c^2_{N_x-2}}+10\lambda^2 & \frac{20}{c^2_{N_x-1}}-20\lambda^2\\ \end{bmatrix}, \end{align} \begin{align} C=-A \end{align} and also \begin{align} \textbf{u}^n=\begin{bmatrix} u_{1}^{n} \\ u_{2}^{n}\\ \vdots\\ u_{N_x-2}^{n}\\ u_{N_x-1}^{n} \end{bmatrix},~ \textbf{b}^n= \begin{bmatrix} -\left(\frac{1}{c^2_{0}}-\lambda^2\right)f_{a}^{n+1}+\left(\frac{2}{c^2_{0}}+10\lambda^2\right)f_{a}^{n} -\left(\frac{1}{c^2_{0}}-\lambda^2\right)f_{a}^{n-1}\\ 0\\ \vdots\\ 0\\ -\left(\frac{1}{c^2_{N_x}}-\lambda^2\right)f_{b}^{n+1}+\left(\frac{2}{c^2_{N_x}}+10\lambda^2\right)f_{b}^{n} -\left(\frac{1}{c^2_{0}}-\lambda^2\right)f_{b}^{n-1} \\ \end{bmatrix}, \textbf{F}^n=\tau^2 \begin{bmatrix} \mathbf{F}_{1}^{n}\\ \mathbf{F}_{2}^{n}\\ \vdots\\ \mathbf{F}_{N_x-2}^{n}\\ \mathbf{F}_{N_x-1}^{n} \end{bmatrix}. \end{align} Therefore, the presented scheme can be expressed in the following matrix form, \begin{align} \textbf{u}^{n+1}=A^{-1}\left(B \textbf{u}^{n}+C \textbf{u}^{n-1}+\textbf{b}^n+ \textbf{F}^n\right). \end{align}

For Stability and convergence analyses, see this file.

Example

Consider the following problem, \begin{align*} \frac{\partial^2 u}{\partial t^2} &= \mathrm{e}^{-x} \frac{\partial^2 u}{\partial x^2}+{\mathrm{e}}^{t+x}-{\mathrm{e}}^t ,&(x,t)\in (0,1)\times(0,1],\\ u(x,0)&=\mathrm{e}^{x},&x\in [0,1],\\ \frac{\partial }{\partial t}u(x,0) &= \mathrm{e}^{x},&x\in [0,1],\\ u(0,t) &= \mathrm{e}^{t} &t \in[0,1],\\ u(1,t) &= \mathrm{e}^{t+1},&t \in[0,1]. \end{align*} The exact solution corresponding to the problem can be found as follows, $$ u(x,t)=\mathrm{e}^{x+t} $$

The Fourth-order Scheme

Convergence Rate

For a fixed $N_t$, we have


References

  1. Das, Sambit, Wenyuan Liao, and Anirudh Gupta. "An efficient fourth-order low dispersive finite difference scheme for a 2-D acoustic wave equation." Journal of computational and Applied Mathematics 258 (2014): 151-167.

  2. Liao, Wenyuan. "On the dispersion, stability and accuracy of a compact higher-order finite difference scheme for 3D acoustic wave equation." Journal of Computational and Applied Mathematics 270 (2014): 571-583.

  3. Liao, Wenyuan. "An implicit fourth-order compact finite difference scheme for one-dimensional Burgers’ equation." Applied Mathematics and Computation 206.2 (2008): 755-764.