A Comparison of Deep Transfer Learning Methods for Land Use and Land Cover Classification

Published in Sustainability, 2023

Recommended citation: H. Dastour and Q. K. Hassan, "Comparison of Deep Transfer Learning Methods for Land Use and Land Cover Classification", Sustainability, 15(10):7854, 2023. [IF: 3.9; IF Quartile: Q2] https://www.mdpi.com/2071-1050/15/10/7854

Abstract:

The pace of Land Use/Land Cover (LULC) change has accelerated due to population growth, industrialization, and economic development. To understand and analyze this transformation, it is essential to examine changes in LULC meticulously. LULC classification is a fundamental and complex task that plays a significant role in farming decision making and urban planning for long-term development in the earth observation system. Recent advances in deep learning, transfer learning, and remote sensing technology have simplified the LULC classification problem. Deep transfer learning is particularly useful for addressing the issue of insufficient training data because it reduces the need for equally distributed data. In this study, thirty-nine deep transfer learning models were systematically evaluated alongside multiple deep transfer learning models for LULC classification using a consistent set of criteria. Our experiments will be conducted under controlled conditions to provide valuable insights for future research on LULC classification using deep transfer learning models. Among our models, ResNet50, EfficientNetV2B0, and ResNet152 were the top performers in terms of kappa and accuracy scores. ResNet152 required three times longer training time than EfficientNetV2B0 on our test computer, while ResNet50 took roughly twice as long. ResNet50 achieved an overall f1-score of 0.967 on the test set, with the Highway class having the lowest score and the Sea Lake class having the highest.

PDF file