
1 Finite-Difference Methods for the Two Dimensional Wave Equation
A two-dimensional for of the wave equation presented in (??) can be found as follows,

∂ 2u
∂ t2 = c2(x,y)∆u+ f (x,y, t), (x,y) ∈ I, t ∈ (T1,T2],

u(x,y,T1) = g(x,y), (x,y) ∈ J,
∂

∂ t u(x,y,T1) = s(x,y), (x,y) ∈ J,
u(a,y, t) = fa(y, t), y ∈ [c,d], t ∈ [T1,T2],

u(b,y, t) = fb(y, t), y ∈ [c,d], t ∈ [T1,T2],

u(x,c, t) = fc(x, t), x ∈ [a,b], t ∈ [T1,T2],

u(x,d, t) = fd(x, t), x ∈ [a,b], t ∈ [T1,T2],

(1)

where I = (a,b)× (c,d) and J = [a,b]× [c,d].
Moreover, we derived the general scheme in the main article a follows,
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Theorem 1 (Stability). Assume that the solution of the two-dimensional acoustic wave equation (1) is sufficiently
smooth. The stability criteria of the numerical scheme introduced in (2) can be derived as follows,
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where α = γ and h = hx = hy.

Proof. The proof can be done using. Von Neumann stability analysis. The scheme can be written in the following
form,
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Let α = γ , and f (x,y, t) = 0 for all x, y and t. It can be concluded that,
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It follows that,[
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where θx = hξx, θy = hξy and g is the amplification factor. The equation (6) can be simplified as follows,
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In case that (
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the quadratic equation (7) will have two distinct real roots and one of them is greater than 1. This would lead to
instability. Therefore, the following case is considered in which the roots of quadratic equation (7) are complex.(
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As a result,
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Since ϕ is non-zero,

(1−4α)ϕ < 1. (10)

This means,
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for any θx, θy. Therefore,
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where h = hx = hy.

Corollary 1.1. The following results can be obtained from theorem 1
I. The stability analysis criteria of the explicit scheme, introduced in (??), can be obtained by setting α = 0 in the

equation (3)
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II. Similarly, the stability criteria of the implicit scheme can be derived by setting α = 1/4 in (3). It follows that,
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which means that the implicit scheme is unconditionally stable.

Theorem 2 (Convergence). The numerical scheme (2) is the second order in both time and space considering h =
hx = hy.

Proof. Let’s assume h = hx = hy and also assume f n
i, j = 0 in the equation (2) for all values of i, j and n. It follows that,
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The difference between the left hand and right sides of (15), using Taylor series expansion, can be found as follows,
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The order of general scheme in space can be obtained by choosing τ arbitrary small in the equation (17). It follows
that,
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The implicit scheme, α = γ = 1
4 and β = 1

2 , is unconditionally stable according to (??); therefore, the order of
general scheme in time can be obtained by choosing h arbitrary small in the equation (16). It follows that,
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However, the following relationship between h and τ can be considered if the method is not unconditionally stable,

h = µτ, (19)

where µ is a positive real number. It follows from (20)
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which confirms that the conditionally stable scheme is second order in time as well.

3


	Finite-Difference Methods for the Two Dimensional Wave Equation

