
1 Finite-Difference Methods for the One Dimensional Wave Equation
A one-dimensional for of the wave equation can be found as follows,

∂ 2u
∂ t2 = c2(x) ∂ 2u

∂x2 + f (x, t), (x, t) ∈ (a,b)× (T1,T2],

u(x,T1) = h(x), x ∈ [a,b],
∂

∂ t u(x,T1) = s(x), x ∈ [a,b],
u(a, t) = f1(t), t ∈ [T1,T2],

u(b, t) = f2(t), t ∈ [T1,T2].

(1)

Moreover, we derived the general scheme in the main article a follows,
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Theorem 1 (Stability). Assume that the solution of the one dimensional acoustic wave equation (1) is sufficiently
smooth. The stability criteria of the numerical scheme introduced in (2) can be derived as follows,

τ <
1√
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h
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where α = γ .

Proof. The Fourier transform of a function u(x), which is defined on R, is uniquely defined as follows,

û(ω) =
1√
2π

ˆ
∞

−∞

e−iωxu(x)dx. (4)

In addition, the Fourier inversion formula is given by the following equation,

u(x) =
1√
2π

ˆ
∞

−∞

eiωxû(x)dω. (5)

Furthermore, the Fourier transform of a gird function such as um for all integers m is available as follows [?],

û(ξ ) =
1√
2π

∞

∑
m=−∞

e−imhξ umh, ξ ∈
[
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h
,

π

h

]
, (6)

where h = ∆x. In addition, the Fourier inversion formula of v for all integers m,
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1√
2π

ˆ π

h

− π

h

eimhξ û(ξ )dξ . (7)

As a result, the Fourier inversion formula for un
m for all m and n can be found as follows,

un
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h

− π

h

eimhξ ûn(ξ )dξ , (8)

where,
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h
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]
, (9)

First, let’s perform the stability analyze of the explicit scheme using Von Neumann stability analysis. Consider the
following explicit scheme,
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Without loss of generality, let f n
m = 0 for all values of m and n. It follows from using the Fourier inversion formula (8)

and (10),
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for all 1≤ m≤ Nx and 1≤ n≤ Nt .
On the other hand, the Fourier inversion formula for un+1

m can be found as follows,

un+1
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It follows from comparison of (11) and (12) and also the uniqueness of the Fourier transform,

ûn+1(ξ ) =
[
c2

mλ
2(e−ihξ + eihξ )+2

(
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mλ
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Define the amplification factor as follows,

g =
ûn+1(ξ )

ûn(ξ )
. (14)

As a result of (13) and (14),

g+g−1 = 2−4c2
mλ

2 sin2 θ

2
, (15)

where θ = hξ . It can be concluded that,
g2−2ϕg+1 = 0. (16)

where ϕ = 1−2c2
mλ 2 sin2 θ

2 . The roots of the last quadratic equation are

g± = ϕ±
√

ϕ2−1 (17)

In case that ϕ2−1≥ 0, the quadratic equation will have two real roots and it follows form the definition of ϕ that
ϕ <−1. This means that one of the roots is g−,

g− = ϕ−
√

ϕ2−1 < ϕ <−1, (18)

which would lead to instability.
However, in case that ϕ2−1 < 0 or |ϕ|< 1 and the roots of the quadratic equation are complex,

|g±|=
∣∣∣ϕ± i

√
1−ϕ2

∣∣∣=√ϕ2 +1−ϕ2 = 1. (19)

It can be concluded that the stability is equivalent to |ϕ|< 1. Therefore,

c2
mλ

2 sin2 θ

2
< 1, (20)

for any θ . This means that cmλ < 1 for 0≤ m≤ Nx.
Following a stability analysis, the stability requirement here can be derived as follows,
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0≤m≤Nx

cm < h. (21)
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Von Neumann stability analysis also can be applied to the general implicit scheme,
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The analyze of stability is not sensitive to f (x,y) due to the fact that f (x, t) is known for (x, t) ∈ [a,b]× [T1,T2] and
f is assumed bounded. Therefore, without loss of generality, f can be regarded zero for convenience. Similar to the
previous case, it can be concluded that,[
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2)]+ ûn(ξ )

+
[
γc2

mλ
2
(

e−ihξ + eihξ

)
−
(
1+2γc2

mλ
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It follows from dividing the equation (23) by ûn(ξ ) and the theorem assumption that α = γ ,[
−αc2

mλ
2
(

e−iθ + eiθ
)
+
(
1+2αc2

mλ
2)]g =

[
βc2

mλ
2
(

e−iθ + eiθ
)
+
(
2−2βc2

mλ
2)]

+
[
αc2

mλ
2
(

e−iθ + eiθ
)
−
(
1+2αc2

mλ
2)]g−1, (24)

where g is the amplification factor and θ = hξ . The equation (24) can be simplified as follows,
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]
g+1 = 0, (25)

where ϕ = c2
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2 . It follows that,
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In case that (
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the quadratic equation (26) will have two distinct real roots and one of them is greater than 1. This would lead to
instability.

Therefore, the following case is considered in which the roots of quadratic equation (26) are complex.(
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As a result,
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Since ϕ is non-zero,
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Corollary 1.1. The stability of the implicit method introduced in theorem (1) can be derived by setting α = 1/4 in (3).
It follows that,

cmλ < ∞, (32)

which means that the implicit scheme is unconditionally stable.

Theorem 2 (Convergence). The numerical scheme (2) is the second order in both time and space considering h =
hx = hy.

Proof. Without loss of generality, assume f n
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It follows from (34),
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The order of the explicit scheme follows from setting α = γ = 0 and β = 1 in (36),
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It follows from (37),
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and setting h = µτ where µ is a known integer (this condition is considered due to stability criterion (21)).
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Therefore, the explicit scheme is second-order respect to both h and τ and also the total order of this scheme is 2.

The order of the implicit scheme follows from setting α = γ = 1
4 and β = 1

2 in (36),
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Similarly, after taking limits,
Similarly, it follows from applying limits on (40)
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Hence, the implicit scheme is second-order respect to both h and τ and the total order of this scheme is also 2.
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