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Abstract
The exchange of energy, water, and carbon between the land surface and the atmosphere is critically influenced by vegetation. 
However, vegetation cover has been changing due to climate variability and human activities, which can affect ecosystems, 
biodiversity, land management, and human well-being. This study aimed to examine the impact of climate factors on different 
vegetation types in Alberta, Canada. Remote sensing and climate data from various sites were collected and analyzed using 
spatial and temporal correlation analysis methods. During the study period of 2001–2022, this study revealed that temporal 
dynamics between NDVI and climate variables were assessed using NCC analyses on various land cover types. The results 
revealed a lead of 3.5–4 months of NDVI over the Relative Humidity Average. Additionally, LST-Day demonstrated a lead 
of two weeks over NDVI, while LST-Night exhibited minimal lag with NDVI, except in regions characterized by sparse 
vegetation. Furthermore, NDVI displayed a lag of 2–4 weeks behind Precipitation. Land cover dynamics in Alberta from 
2001 to 2022 reveal significant trends. Cropland areas, covering nearly 20%, consistently increased with increasing relative 
humidity, except for deviations in 2001 and 2002. Evergreen Needleleaf forests, constituting around 14.5%, exhibited an 
upward trend correlated with increased precipitation. Grasslands, comprising 13.8%, showed diminishing coverage despite 
rising humidity and precipitation. Woody Savannas, accounting for approximately 29%, displayed increased coverage in 
2006 but exhibited a declining trend over the study period. These trends highlight the complex interplay between land cover 
changes and climatic factors in Alberta. The quantification of the influence of climate variables on NDVI revealed the piv-
otal roles of LST-Day and LST-Night, with average feature importance values of 37.42% and 40.35%, respectively, across 
all land cover types.

Keywords  Time series analysis · Vegetation greenness · Cross-correlation analyses · Anomaly analyses · Machine 
learning · Trend analysis

1  Introduction

Climate change has caused substantial changes in vegeta-
tion cover, affecting the paramount role of vegetation in 
regulating the energy, water, and carbon fluxes between 
the land surface and the atmosphere (Julien and Sobrino 
2009; Sekhon et al. 2010; Halofsky et al. 2018). To bet-
ter understand the ecological processes underlying these 

changes, it is essential to quantify the influence of climate 
on vegetation dynamics (Cui et al. 2018; Bari et al. 2021; 
Hussien et al. 2023). This involves establishing empirical 
relationships between climatic variables, such as tempera-
ture, precipitation, and humidity, and vegetation attributes, 
such as composition, distribution, and phenology (Cui et al. 
2018; Bari et al. 2021; Hussien et al. 2023). By doing so, 
patterns can be discerned, changes can be forecasted, and 
deeper insights into the mechanisms governing ecosystems 
can be gained (Halofsky et al. 2018; Prevedello et al. 2019). 
Moreover, ecosystem responses to future climate scenarios 
can be predicted by this quantitative approach (Cui et al. 
2018; Bari et al. 2021; Hussien et al. 2023). By extrapolat-
ing the observed relationships, potential shifts in vegetation 
patterns can be anticipated, which have practical implica-
tions for land management, conservation efforts, and climate 
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change mitigation (Halofsky et al. 2018; Prevedello et al. 
2019).

Regional variations play a pivotal role in shaping the 
impact of climate on vegetation. These variations under-
score the diverse climatic conditions, topographical features, 
and ecological contexts prevalent across different geographic 
areas (Zhang et al. 2023). Firstly, climatic factors, such as 
temperature, precipitation, and their seasonality, differ sig-
nificantly from one region to another. For example, veg-
etation in arid regions may be more sensitive to changes 
in precipitation, while vegetation in temperate zones may 
be more influenced by temperature fluctuations (Wu et al. 
2023). Therefore, the climatic variables that have the strong-
est impact on vegetation can vary markedly between regions 
(Ali 2013; Jia et al. 2020). Secondly, geographical features, 
such as mountain ranges, bodies of water, and land cover, 
can create microclimates and modify the effect of broader 
climatic patterns on vegetation (Gao et al. 2013; Yin et al. 
2016; Jia et al. 2020). These local conditions can either 
amplify or attenuate the climate-vegetation relationship, 
adding to the regional variability (Ali 2013). Additionally, 
ecological factors, including species composition, soil char-
acteristics, and disturbance regimes, interact with climate 
in unique ways in different regions (Zeng et al. 2023; Sun 
et al. 2020). These ecological nuances can lead to different 
responses of vegetation to similar climatic conditions (Pre-
vedello et al. 2019).

Understanding the influence of climate on vegetation in 
Alberta, Canada is crucial because of the region’s unique 
climatic conditions, topography, and ecological settings 
(Estevo et al. 2022). This understanding is vital for predict-
ing and addressing the impacts of climate change on ecosys-
tems. Research in this area provides valuable insights into 
how plant communities adapt to changing climate, which 
can inform conservation, land management, and sustainable 
development initiatives (Bellard et al. 2012; Grimm et al. 
2013). This knowledge can support evidence-based poli-
cies and practices that aim to preserve biodiversity, reduce 
climate change effects, and enhance ecosystem resilience 
(Downing and Pettapiece 2006; Jiang et al. 2016; Barber 
et al. 2015; Baldwin et al. 2020).

Several studies have analyzed the relationship between 
the Normalized Difference Vegetation Index (NDVI), Land 
Surface Temperature (LST), and climate data (Hassan and 
Bourque 2010; Chen et al. 2020; Zeren Cetin et al. 2023). 
Zhao et al. (2011) examined vegetation growth over 22 years 
using satellite data, focusing on how it responds to climate 
change in different regions. They found that approximately 
30% of vegetated areas experienced a 0.7% annual increase 
in vegetation during the growing season. This trend was 
observed across all biomes and bioregions, except for the 
Sawuer subregion where there was no significant climate 
change. The study revealed a strong correlation between 

vegetation growth and precipitation and evapotranspiration 
during the growing season, but not with temperature. Inter-
estingly, the researchers also discovered a positive relation-
ship between winter precipitation and vegetation growth. 
These findings indicate that precipitation plays a crucial role 
in vegetation growth in this area, including mountain forests 
and grasslands, which are typically thought to be limited 
by low temperatures in winter and early spring (Zhao et al. 
2011). Liu and Menzel (2016) studied vegetation and cli-
mate trends in Rhineland-Palatinate, Germany. They found 
upward trends in NDVI for all vegetation types, significant 
increases in temperature, and weak decreases in precipita-
tion. The temperature was the main driver of vegetation 
variability, while NDVI showed a negative correlation with 
precipitation. Strong negative correlations between NDVI 
and precipitation were observed at the 2-month and 8-month 
scales. Positive correlations between NDVI and temperature 
were strongest at the 8- to 16-month scales (Liu and Menzel 
2016). Al Balasmeh and Karmaker (2019) examined vegeta-
tion dynamics in India across four distinct topographical and 
climatic conditions. It utilized NDVI data from the SPOT 
satellite’s vegetation sensors, as well as temperature and pre-
cipitation data from the Asian Precipitation-Highly Resolved 
Observational Data Integration Towards Evaluation project. 
The study discovered that vegetation growth initiates when 
the average temperature reaches or exceeds 10 ◦ C. Further 
increases in temperature have minimal impact on vegetation 
growth. Additionally, the study observed a positive relation-
ship between monthly NDVI and precipitation, depending on 
the forest type and local climate. However, excessive rainfall 
led to a decline in vegetation growth. The NDVI data dis-
played a positive trend across all four sites. In the northern 
region, temperature showed a positive trend, while precipi-
tation exhibited a negative trend. Conversely, in the eastern 
and western regions, the temperature had a negative trend, 
while precipitation showed a positive trend (Al Balasmeh 
and Karmaker 2019). Guo et al. (2020) conducted a study 
to investigate the influence of climate change on vegetation 
in Hainan Island, utilizing meteorological observation data 
and NDVI monitoring data spanning from 2000 to 2018. 
The findings indicate favorable ecological conditions on 
the island, with positive vegetation trends observed. The 
study highlights the significant positive impact of air tem-
perature on NDVI in Hainan Island. Additionally, it reveals 
that precipitation hampers vegetation growth, particularly 
during the rainy season, primarily affecting the central areas 
of the island. These findings offer a scientific foundation 
for promoting ecologically sustainable development in the 
region and provide valuable insights into the effects of cli-
mate change on vegetation in tropical island environments 
(Guo et al. 2020). Chen et al. (2021) analyzed a 33-year 
time series of Landsat EVI data with machine learning to 
assess vegetation changes in the western Canadian Arctic. 
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They found that over 68% of the area experienced signifi-
cant greening, particularly in shrub-dominated regions with 
moderate slopes and lower elevations. Dastour et al. (2022) 
employed the Least-Squares Wavelet (LSWAVE) to examine 
the connection between climate and vegetation time series by 
assessing coherency and time lag estimation. Their findings 
indicate that the seasonal patterns of climate and vegetation 
exhibit coherence with a time delay. In the Athabasca River 
Basin (ARB), the most significant coherence was observed 
in the annual cycle, with vegetation and temperature display-
ing an 84% annual coherency, and vegetation and precipita-
tion exhibiting a 46% coherency. Specifically, the annual 
cycles of temperature and precipitation preceded those of 
vegetation by approximately 2 and 3 weeks, respectively.

The purpose of this research was to examine how climate 
affects various types of land cover in Alberta, Canada using 
remote sensing and combined climate data. It studied how 
temperature, humidity, and precipitation could affect veg-
etation patterns. A novel method was applied to interpolate 
climate data. The study also explored the vegetation changes 
during unusual periods and quantified the nonlinear relation-
ship between climate and vegetation, considering the envi-
ronmental factors mentioned above. The main objective of 
this research was to enhance the understanding of vegetation 
growth and health through the analysis of spatiotemporal 
parameters. The following analyses were conducted:

•	 Spatial and temporal correlation assessments.
•	 Identification of trends and anomalies.
•	 Quantification of the (nonlinear) influence of climate on 

vegetation.

2 � Materials and Methods

2.1 � Study Region

The province of Alberta, Canada, was the focus of this 
research, with its vegetation and physical features being the 
main interest. The study area covered 438,063 square kilo-
meters, extending from 55◦ to 60◦ north latitude at the border 
with the Northwest Territories (Stralberg et al. 2018).

2.2 � Data

The study employed interpolated weather data sourced from 
the Agriculture and Irrigation Department (Agriculture and 
Irrigation Department 2023) for Alberta townships. This 
dataset encompassed the average relative humidity expressed 
as a percentage (%) and precipitation measured in millim-
eters (mm).

The vegetation analysis used various datasets from 
Google Earth Engine (GEE), a cloud-based platform 

for geospatial analysis. The datasets included Moderate 
Resolution Imaging Spectroradiometer (MODIS) NDVI, 
MOD13A1 (V061), MODIS LST-Day, MOD11A2 (v061), 
MODIS LST-Night, MOD11A2 (v061), and MODIS Land 
Cover Type-1 (LULC), MCD12Q1 (V061), all provided by 
the National Aeronautics and Space Administration (NASA). 
The NDVI imagery covered 22 years from 2000 to 2021, 
while the MODIS annual LULC was available from 2001 
to 2021. This study used 16-day MODIS NDVI imagery at 
500 m spatial resolution, 8-day MODIS LST-Day and LST-
Night at 1 km spatial resolution, and the annual MODIS 
LULC at 500 m resolution (Sulla-Menashe and Friedl 2018). 
The pixel quality band of the MODIS data product was used 
to mask out cloudy pixels and ensure accurate results.

2.3 � Methods

2.3.1 � Data Preparation

Climate datasets were generated by integrating interpolated 
weather data for Alberta townships. For each township, cli-
mate attributes such as Relative Humidity Average (%) and 
Precipitation (mm) were organized based on the geographic 
coordinates of the township center. The procedure involved 
the following sequential steps: 

(a)	 Initial Data Preparation: The process began with 
generating sets of 60 images, each with daily temporal 
resolution. These images were derived from the geo-
graphic coordinates of the township centers and then 
converted into GeoTIFF format.

(b)	 Imputation of Potential Missing Values: Sets of sixty 
two-dimensional matrices were consolidated into a 
three-dimensional matrix. Before the upscaling process, 
missing values in the dataset were addressed through 
the application of 1D and 2D splines (Alba et al. 2015; 
Usman and Ramdhani 2019). This addressed gaps both 
in the spatial xy plane and along the temporal axis. 
The temporal dimension was represented by a 1D array 
comprising 60 elements, matching the 60 matrices in 
the dataset.

(c)	 Upscaling: Spline techniques were employed to 
enhance the resolution of each individual 3D matrix. 
This meticulous process ensured that all 60 segments 
within the matrix effectively accommodated data with 
a spatial resolution of 500 m.

(d)	 Final Separation: This step involved dividing each 
enhanced 3D matrix into 60 distinct geo-images. Each 
image was associated with a specific time step and 
maintained a consistent spatial resolution of 500 m. At 
this stage, quality assurance control was performed by 
comparing the original dataset to the output data.
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The aggregation of datasets was conducted based on their 
inherent attributes within the framework of spatiotemporal 
analyses. Precipitation data was subjected to summation, 
while the remaining variables were subjected to averaging. 
This aggregation process was executed to achieve alignment 
with the 16-day temporal resolution of NDVI. Figure 1 pro-
vides a visual representation of the process for generating 
16-day datasets that align in both spatial and temporal reso-
lution with NDVI. These datasets encompass LST-Day ( ◦

C), LST-Night ( ◦C), Average Relative Humidity (%), and 
Precipitation (mm). To access spatiotemporal datasets, one 
can follow the outlined procedure until reaching the conclu-
sion of the rectangular orange box in Fig. 1.

In the context of land-use land-cover (LULC) class-based 
analyses, the mean value for each variable was computed 
individually for each 16-day timestamp and each specific 
LULC class. To illustrate this process, let’s take the example 
of calculating the Relative Humidity Average (%) for each 
timestamp and LULC class. This involved utilizing the cor-
responding LULC pixel distribution from the annual MODIS 
LULC dataset for the same year. For each timestamp and 
each LULC class, a value was determined by averaging the 

Relative Humidity Average (%) pixels that belonged to the 
same LULC class. This calculation was carried out consist-
ently for all classes within the given timestamp. This pro-
cedure was iterated for all variables, encompassing NDVI, 
LST-Day ( ◦C), LST-Night ( ◦C), Relative Humidity Average 
(%), and Precipitation (mm), utilizing their respective 16-day 
spatiotemporal datasets and annual LULC classes.

2.3.2 � Correlation Analyses

The Pearson correlation, a widely employed statistical met-
ric, assesses the strength and direction of a linear relation-
ship between two variables (Lee Rodgers and Nicewander 
1988). For spatial analysis, this study computed Pearson 
correlations between NDVI and the following variables: 
LST-Day ( ◦C), LST-Night ( ◦C), Relative Humidity Average 
(%), and Precipitation (mm). To ensure congruity in spatial 
and temporal resolution, the methodology detailed in the 
Sect. 2.3.1 was employed. Then, a pair of time series origi-
nating from the two variables (e.g., NDVI and LST-Day) 
for each pixel were extracted, followed by the calculation of 
their linear correlation.

Fig. 1   Workflow for generating hybrid datasets. In this workflow 
rectangular gridded shapes represent matrices in which red squared 
shapes represent missing data points. To align with the spatial 
and temporal resolution of NDVI images, one must follow the pro-

cess until reaching the orange box. Similarly, for obtaining a 16-day 
hybrid dataset, the procedure should be pursued until reaching the 
blue box
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Similarly, following the methodology outlined in 
Sect. 2.3.1, a 16-day hybrid dataset categorized by land 
cover types was generated. For each timestamp, this data-
set encompassed NDVI, LST-Day ( ◦C), LST-Night ( ◦C), 
Relative Humidity Average (%), and Precipitation (mm) 
values for all classes, except Barren, Water Bodies, Perma-
nent Snow and Ice, Urban and Built-up Lands, and Closed 
Shrublands. These classes were excluded due to either 
their low or nonexistent vegetation density, or the lack of 
significant distribution of such land cover types across the 
study area (Sulla-Menashe and Friedl 2018). This dataset 
was further employed for the subsequent analyses pre-
sented in the remainder of this article.

Normalized Cross-Correlation (NCC) is a widely 
applied mathematical concept found in diverse domains, 
such as signal processing, image analysis, and pattern rec-
ognition (Yoo and Han 2009; Kaso 2018; Pan et al. 2020). 
Its fundamental purpose is to assess the similarity between 
two sets of data or signals. In mathematical terms, the 
NCC between two signals, conventionally represented as x 
and y,  is formally defined as follows (Yoo and Han 2009; 
Kaso 2018; Pan et al. 2020):

where,

•	 N represents the length of the signals x and y.
•	 x[n] and y[n] denote the discrete values of the two sig-

nals at time index n.
•	 x̄ and ȳ are the means of the signals x and y respec-

tively.

In this formulation, NCC quantifies the similarity between 
two signals by evaluating the normalized covariance of 
their deviations from their respective means. It yields a 
numerical value within the range of −1 to 1, where a result 
of 1 signifies a perfect positive correlation, −1 indicates a 
perfect negative correlation, and 0 denotes no correlation 
between the signals (Yoo and Han 2009; Kaso 2018; Pan 
et al. 2020).

Determining time lags between two signals using NCC 
involved several essential steps. Initially, NCC values were 
computed for a range of potential lags by shifting one of 
the signals accordingly, creating an NCC time series. Sub-
sequently, peaks in the NCC time series were identified, 
signifying significant correlations at specific lags. The 
position of these peaks denoted the direction and magni-
tude of the lag or lead between the signals. The lag with 
the highest NCC value was selected as the most prominent 
one (Yoo and Han 2009; Kaso 2018; Pan et al. 2020).

(1)NCC(x, y) =

∑N−1

n=0
(x[n] − x̄)(y[n] − ȳ)�∑N−1

n=0
(x[n] − x̄)2

∑N−1

n=0
(y[n] − ȳ)2

,

2.3.3 � Trend Analyses

Seasonal and Trend decomposition using LOESS (STL) is 
a statistical methodology that was first introduced by Cleve-
land et al. (1990). Its primary objective is to break down 
time series data into three key components: trend, seasonal-
ity, and residuals. The trend component reflects the overall 
direction of the data over time, while the seasonal com-
ponent captures cyclic patterns that repeat over time. The 
residual component represents the variation in the data that 
is not accounted for by the trend or seasonal components. 
Mathematically, a time series Yt can be decomposed into 
its seasonality St, trend Tt, and residual Rt time series com-
ponents using STL, as expressed in the following equation 
(Wen et al. 2019, 2020):

 Wen et al. (2019) proposed RobustSTL as a more robust 
version of STL for time series decomposition. The Robust-
STL algorithm can be used to decompose time series data 
by addressing the challenges of noise, outliers, and shifts in 
seasonality. The algorithm consists of four steps: denoising 
the time series, extracting the trend, calculating the season-
ality component, and adjusting the extracted components. 
These steps are repeated until convergence, resulting in a 
robust decomposition of the time series data (Wen et al. 
2019, 2020).

In time series analysis, it is essential to detect anoma-
lous periods to comprehend unusual patterns or events that 
significantly deviate from the expected behavior of the data 
(Boschetti et al. 2013; Soriano-Vargas et al. 2021; Jamshidi 
et al. 2022). A powerful approach to identifying these peri-
ods is through the use of Z-score analysis on the trend com-
ponent Tt obtained from RobustSTL. The Z-score analysis 
is a statistical technique that involves standardizing the data 
by subtracting the mean and dividing by the standard devia-
tion. This standardization produces a score that indicates the 
number of standard deviations away from the mean that a 
particular data point is. In the context of time series analy-
sis, the Z-score analysis of the trend component Tt can help 
pinpoint periods that significantly differ from the expected 
trend behavior. This approach can also assist in identifying 
potential outliers, providing critical insights into the under-
lying processes that drive the data (Boschetti et al. 2013; 
Soriano-Vargas et al. 2021; Jamshidi et al. 2022).

To initiate the process of detecting anomalous periods 
within a time series Yt, the first step involves decompos-
ing the series into its fundamental components—namely, St, 
Tt, and Rt—utilizing the RobustSTL algorithm. Following 
this, the trend component Tt is independently evaluated, and 
instances that satisfy the following condition are identified 
(Zhang et al. 2007; Chakrabarti et al. 2008):

(2)Yt = Tt + St + Rt.
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where �t and �t stand for the mean and standard deviation of 
Tt, respectively. Meanwhile, Z�∕2 represents the Z-score cor-
responding to the significance level �. To illustrate, in cases 
where � = 0.05, Z�∕2 aligns with the 95th percentile of the 
standard normal distribution, providing a confidence level 
of 95% for the identification of these periods as anomalies.

Additionally, two non-parametric statistical methods, 
namely Mann–Kendall (MK) test (Mann 1945) and Sen’s 
Slope Estimator (SSE) (Sen 1968), were utilized to analyze 
the data. The signs of the differences between observa-
tions were examined by the MK test to detect trends in the 
data. The magnitude and direction of the trends, indicating 
whether they indicated increasing or decreasing trends, were 
assessed by SSE (Ahmed and Hassan 2023).

The significance of the trends at the 95% and 99% confi-
dence levels was determined by the MK test, which allowed 
the reliability of the findings to be assessed. These two meth-
ods enable trends in the data to be identified and evaluated 
without making assumptions about its underlying distribu-
tion, making them useful tools for the analysis (Ahmed and 
Hassan 2023).

To compute MK test statistic S for a time series 
x1, x2,… , xn of length n,   we use the following equation 
(Ahmed and Hassan 2023):

where sgn(xi − xj) is the sign function defined as:

The sign function indicates whether the difference between 
the values of the time series at two distinct time points, i and 
j,  is positive, negative, or zero.

The mean of variable S is zero, and the variance of S can 
be determined using the following equation:

where p denotes the total number of tie groups in the data, 
and tk represents the number of data points within the k-th 
tie group.

(3)

⎧
⎪⎨⎪⎩

T
t
− �

t

�
t

≥ Z�∕2, Indicating Significantly High,

T
t
− �

t

�
t

≤ −Z�∕2, Indicating Significantly Low,

(4)S =

n−1∑
i=1

n∑
j=i+1

sgn(xi − xj),

(5)sgn(xi − xj) =

⎧
⎪⎨⎪⎩

1, xi − xj > 0,

0, xi − xj = 0,

−1, xi − xj < 0.

(6)

VAR(S) =
1

18

(
n(n − 1)(2n + 5)

−

p∑
k=1

tk(tk − 1)(2tk + 5)

)
,

When the value of n is greater than 10, the standard 
normal test statistic Z is calculated based on the following 
conditions:

where a positive or negative value of Z indicates an upward 
or downward trend, respectively.

The magnitude of trends was estimated using SSE, 
denoted by �, which is calculated using the following equa-
tion (Ahmed and Hassan 2023):

where xi and xj represent the i-th and j-th ordered observa-
tions, and i and j are indices such that i < j. When the value 
of � is positive, it implies an upward trend during the period 
of interest, whereas a negative value of � indicates a down-
ward trend (Ahmed and Hassan 2023). The 16-day hybrid 
dataset underwent a combined analysis of anomaly detection 
and the MK-trend test, facilitated by the application of the 
Sen’s Slope Estimator (SSE).

2.3.4 � Evaluating Climate’s Role in Shaping Vegetation

CatBoost, a rapid and efficient machine learning algorithm 
(Prokhorenkova et al. 2018), was employed in our study. 
This algorithm operates by utilizing the technique of attrib-
ute splitting to delineate the feature space. It effectively 
mitigates gradient bias to mitigate the risk of overfitting. 
Furthermore, CatBoost employs a swift scoring mechanism, 
which leverages oblivious trees and feature binarization, 
thereby enhancing computational efficiency. This algorithm 
was employed to develop and train a set of 11 models using 
the hybrid 16-day dataset.

The process of identifying the most impactful climate 
variables for each LULC class was conducted systemati-
cally. Initially, a thorough examination encompassed several 
combinations of the following factors: NDVI, LST-Day ( ◦

C), LST-Night ( ◦C), Relative Humidity Average (%), and 
Precipitation (mm). The selection of the most suitable fea-
tures for each LULC class was determined by assessing the 
accuracy of initial models generated from all conceivable 
combinations of these variables (Buitinck et al. 2013).

The distribution of sizes between the training, validation, 
and test sets cannot be predetermined with complete accu-
racy and depends on the quantity of available data. This 
means that for smaller datasets, a greater proportion of the 
data will be used for validation and testing, while the train-
ing set will be relatively smaller. Conversely, as the size 

(7)Z =

⎧
⎪⎨⎪⎩

S−1√
VAR(S)

, S > 0,

0, S = 0,
S+1√
VAR(S)

, S < 0.

(8)𝛽 = Median

(
xj − xi

j − i

)
, j > i,
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of the dataset increases, the ratio of validation and testing 
data will decrease while the training data will increase, as 
explained in (Pawluszek-Filipiak and Borkowski 2020; Das-
tour and Hassan 2023). The training data for each model 
comprised all available information leading up to January 
1st, 2019. For model evaluation, a distinct validation dataset, 
spanning from January 1st, 2019, to January 1st, 2021, was 
employed. Additionally, a separate testing dataset, encom-
passing information collected from January 1st, 2021, and 
onwards, was reserved exclusively to assess the models’ 
performance.

The feature importance score generated by the CatBoost 
Regressor is a measure of how much each feature contributes 
to improving the model’s accuracy when used in the decision 
trees. This score is typically normalized between 0 and 100, 
with 100 indicating that the feature is the most important. 
Feature importance refers to the degree to which each feature 
contributes to the model’s ability to predict the target vari-
ables (Hancock and Khoshgoftaar 2020).

All trained models were subjected to evaluation utilizing 
metrics such as mean squared error (MSE), mean absolute 
error (MAE), and R-squared, encompassing assessments 
across the training, testing, and validation sets (Powers 2011; 
Dastour and Hassan 2023). Incorporating accuracy metrics 
into our evaluation process allows us to gauge the model’s 
suitability for practical use. These metrics provide insights 
into the reliability and robustness of the feature importance 
results, which are pivotal for comprehending the connections 
between climate variables and LULC classes (Saarela and 
Jauhiainen 2021).

3 � Results

3.1 � Correlation Analyses

Figure 2 depicts pixel-wise linear correlation coefficients, 
computed at a 500 m spatial resolution, between NDVI and 
the following variables: LST-Day (◦C), LST-Night (◦C), 
Precipitation (mm), Relative Humidity Average (%), Digi-
tal Elevation Model (CDEM) of Alberta at a 30 m spatial 
resolution, and MODIS Land Cover Type-1 (LULC) data for 
2021. This figure also displays linear correlations between 
NDVI and these variables across different land cover types, 
as determined using the 16-day hybrid dataset.

As depicted in Fig. 2a–f, the relationship between NDVI 
and both LST-Day and LST-Night appeared to have been 
influenced by elevation. Particularly, in regions covered by 
Grasslands, the correlation between NDVI and LST-Day 
seemed slightly diminished at higher altitudes compared to 
lower altitudes. Conversely, the correlation between NDVI 
and LST-Night was stronger at higher altitudes within Grass-
land areas compared to their lower-altitude counterparts. 

Similar patterns were observed in areas characterized as 
Savannas. However, in Forested areas, the correlations 
between NDVI and LST-Day, as well as NDVI and LST-
Night exhibited similar trends across both high and low 
altitudes.

In Fig. 2g, the correlation between NDVI and both LST-
Day and LST-Night consistently exhibited high values 
across various land cover types. The lowest correlation was 
observed between NDVI and LST-Day in Cropland areas 
(0.88), while the highest was found in Savanna regions 
(0.93). Regarding the correlation between NDVI and LST-
Night, the lowest values were observed in the Open Shrub-
land and Deciduous Needleleaf Forest areas (0.92 correla-
tion), while higher values were found elsewhere (ranging 
from 0.93 to 0.95). Negative correlation values between 
NDVI and precipitation suggested a phase difference or time 
lag between them. When two-time series display a negative 
correlation, it generally indicates that as one series increases, 
the other tends to decrease, and vice versa. This behavior 
often suggests that one series is leading or lagging the other 
in time (Dean and Dunsmuir 2015; Zhou and Hua 2021).

Table  1 highlights the results of NCC analyses. In 
this table, the upper rows represent the time lag (in days) 
between NDVI and each variable. A negative lag indicates 
NDVI trailing behind, while a positive lag implies NDVI 
leading the variable. The second row displays the associated 
NCC values. Only NCC values exceeding the significance 
threshold of 0.7 have been incorporated into the table.

During the study period spanning 2001–2022, Table 1 
illustrates the temporal dynamics. NDVI exhibited a lead 
over Relative Humidity Average of approximately 112 days 
(almost 3.5 months) across diverse land cover types. Addi-
tionally, LST-Day preceded NDVI by 16 days (approxi-
mately 2 weeks). Concerning LST-Night, a lead time of 
less than 16 days, indicated by zero values, was generally 
observed between NDVI and LST-Night for most land cover 
types. However, in regions characterized by Open Shrub-
lands, Permanent Wetlands, Savannas, and Woody Savan-
nas, NDVI was led by LST-Night by about two weeks. The 
relationship between NDVI and Precipitation revealed a con-
sistent lag of NDVI behind Precipitation in most land cover 
types, with lead times ranging from 16 to 32 days (2 weeks 
to 1 month).

3.2 � Trend Analyses

Figure 3 provides a summary of the anomaly analysis con-
ducted on the 16-day hybrid dataset. The figure shows the 
periods identified as anomalous based on the Z-score analy-
sis of the trend component Tt obtained from RobustSTL.

The trend analysis of the 16-day hybrid dataset was 
performed using the MK test. To eliminate the influence 
of seasonality, the time series Yt was decomposed into its 
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Fig. 2   Pixel-wise linear correlations between a NDVI and LST-Day 
( ◦C), b NDVI and LST-Night ( ◦C), c NDVI and precipitation (mm), 
d NDVI and relative humidity average (%). e The Canadian Digital 
Elevation Model (CDEM) and f Land Cover Type-1 (2021). g The 

correlation of NDVI with relative humidity average (%), LST-Day 
( ◦C), LST-Night ( ◦C), and precipitation (mm) categorized by land 
cover type
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trend (Tt), seasonal (St), and residual (Rt) components using 
the RobustSTL method. Subsequently, the trend com-
ponent Tt was subjected to the MK trend analysis. The 
results of the trend analysis on this dataset are presented 
in Table 2.

The results of the Mann–Kendall test and Sen’s Slope 
analysis conducted on the annual percentage of LULC 
classes from 2001 to 2022 are depicted in Fig. 4. This analy-
sis yielded insights into the temporal trends in the percent-
age of LULC classes and facilitated the identification of 
significant changes in land use patterns.

Figure 4b illustrated an increasing trend in Croplands area 
percentage over the study period, with a slope of 0.066. For 
Cropland areas, Table 2 demonstrated a similar increas-
ing trend in relative humidity with a slope of 0.0053. In 
Fig. 4b, lower Cropland coverage was exhibited during the 
years 2001 and 2002 when compared to the estimated trend-
line. This observation was in alignment with the findings 
presented in Fig. 3b, wherein significantly lower values of 
Relative Humidity Average, LST-Day, LST-Night, and Pre-
cipitation were observed during the years 2001 and 2002, in 
contrast to the remaining duration of the study period.

Figure 4d depicted an upward trend in the percentage of 
Evergreen Needleleaf forest area over the study period, char-
acterized by a slope of 0.057. A corresponding increase in 
precipitation (slope 0.01) for areas covered by Evergreen 
Needleleaf forests was revealed in Table 2. Specifically, dur-
ing the years 2001 and 2002, the coverage of the Evergreen 
Needleleaf forest surpassed that of the estimated trendline. 
This observation aligns with the observations presented in 
Fig. 3e, wherein significantly higher values for NDVI were 
evident. Similarly, the year 2006 is notable in Fig. 4d due 
to slightly lower coverage when compared to the estimated 
trendline. This observation is in concordance with the data 
presented in Fig. 3e, which exhibited significantly higher 

values of LST-Day and LST-Night around 2006, as con-
trasted with the remainder of the study period.

In the case of Grasslands, a declining trend in overall cov-
erage percentage was unveiled by Fig. 4e, marked by a slope 
of −0.112. Table 2 indicated that during the 2001–2022 
period, an upward slope of 0.0019 was observed for Relative 
Humidity Average and 0.0035 for Precipitation, while LST-
Day exhibited a declining trend with a slope of −0.0019. 
Furthermore, Fig. 4e also indicated that the coverage per-
centages for 2000 and 2001 were higher compared to the 
estimated trendline. Additionally, Fig. 3f highlighted values 
of Relative Humidity Average, LST-Night, and Precipitation 
during 2001 and 2002 that were significantly lower, accom-
panied by LST-Day values that were significantly higher, 
contrasting with the rest of the study period.

Figure 4i evidenced an increase in coverage percentage 
for Woody Savannas around 2006, surpassing the estimated 
trendline. Simultaneously, Fig. 3k unveiled significantly 
higher values for LST-Day and LST-Night around the same 
year. In terms of trend analysis, Fig. 4i delineated a decrease 
in the percentage of areas covered by Woody Savannas, char-
acterized by a slope of −0.141. Complementarily, Table 2 
indicated declining trends in LST-Night and NDVI.

3.3 � Evaluating Climate’s Role in Shaping Vegetation

The accuracy results of the CatBoost models for NDVI, 
which were based on Relative Humidity Average, LST-Day, 
LST-Night, and Precipitation, are presented in Table 3. The 
models demonstrated a great level of accuracy, particularly 
when assessed on the validation set, which represents unseen 
data from the training and validation sets. The R-squared 
accuracy scores ranged from 0.931 to 0.983 on the test set, 
showing the efficacy of the models. This high accuracy 
enhances both the selection of influential climate variables 

Table 1   The table comprises pairs of rows, each conveying specific information

The first row in each pair denotes the lag (in days) between NDVI and climate variables. A negative number for Lag means that the NDVI time 
series is leading the climate variable time series, and a positive Lag means the NDVI time series is lagging behind the climate variable time 
series. The second row presents the calculated NCC (normalized cross-correlation) values. Only NCC values surpassing the established thresh-
old of 0.7 are incorporated in the table. Class abbreviations: Cropland/Natural Vegetation Mosaics (CVM), Croplands (C), Deciduous Broadleaf 
Forests (DBF), Deciduous Needleleaf Forests (DNF), Evergreen Needleleaf Forests (ENF), Grasslands (G), Mixed Forests (MF), Open Shrub-
lands (OS), Permanent Wetlands (PW), Savannas (S), and Woody Savannas (WS)

CVM C DBF DNF ENF G MF OS PW S WS

Rel. humidity avg. (%) Lag − 128 − 112 − 112 − 128 − 112 − 112
NCC 0.757 0.701 0.745 0.757 0.767 0.753

LST-Day ( ◦C) Lag 16 16 16 16 16 16 16 16 16 16 16
NCC 0.940 0.898 0.919 0.931 0.924 0.931 0.929 0.936 0.937 0.952 0.95

LST-Night ( ◦C) Lag 0 0 0 16 0 0 0 16 16 16 16
NCC 0.936 0.938 0.922 0.929 0.934 0.950 0.929 0.923 0.943 0.939 0.940

Precipitation (mm) Lag 32 16 0 32 16 16
NCC 0.726 0.703 0.727 0.700 0.751 0.703
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Fig. 3   Anomaly periods were identified in each time series using 
Z-score analysis of the trend component T

t
 obtained through Robust-

STL, with a significance level of � = 0.05. The x-axis spans from 
2000 to 2022 in all panels, with horizontal lines denoting anomalous 

periods. Using Eq.  (3), periods with significantly high values are 
shaded pink at the top of each panel, while periods with significantly 
low values are shaded blue at the bottom
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and confidence in the reliability of feature importance 
results.

Figure 5 presents a summary of feature importance for 
11 models that were developed using the CatBoost Regres-
sor to characterize NDVI in relation to four variables: Rela-
tive Humidity Average (%), LST-Day ( ◦C), LST-Night ( ◦

C), and Precipitation (mm). Notably, a prominent role was 
played by the LST-Day and LST-Night variables in the 
NDVI modeling process when utilizing the 16-day hybrid 
dataset. Specifically, an average importance of 37.42% was 

exhibited for LST-Day, while LST-Night demonstrated an 
average importance of 40.35%. These findings suggested a 
substantial influence of temperature-related attributes in the 
modeling of NDVI, aligning with results that were obtained 
from Correlation Analyses and Trend Analyses. Conversely, 
Precipitation was found to have the least impact and was 
exclusively employed in NDVI modeling across Deciduous 
Needleleaf Forests, Grasslands, and Permanent Wetlands. 
Its average importance in these specific contexts was 5.15%.

Table 2   Mann–Kendall test and Sen’s slope were used to analyze trend component (T
t
) of various time series, obtained through RobustSTL, with 

significant slopes shown at 90% confidence level or higher (* for 99%, † for 95%)

Class abbreviations: Cropland/Natural Vegetation Mosaics (CVM), Croplands (C), Deciduous Broadleaf Forests (DBF), Deciduous Needleleaf 
Forests (DNF), Evergreen Needleleaf Forests (ENF), Grasslands (G), Mixed Forests (MF), Open Shrublands (OS), Permanent Wetlands (PW), 
Savannas (S), and Woody Savannas (WS)

CVM C DBF DNF ENF G

Rel. humidity avg. (%) + 4.71E−03* + 5.32E−03* + 4.15E−03* 9.14E−04 + 6.35E−03* + 1.89E−03*
LST-Day ( ◦C) − 8.31E−04* − 1.10E−03* − 4.00E−04 − 1.94E−03*
LST-Night ( ◦C) + 3.42E−04† − 1.27E−03* − 5.00E−04*
NDVI − 9.75E−05* + 1.56E−05* − 5.22E−05* − 1.34E−05*
Precipitation (mm) + 8.22E−03* + 4.98E−03* + 9.41E−03* + 1.01E−02* + 3.51E−03*

MF OS PW S WS

Rel. humidity avg. (%) + 7.54E−03* − 1.39E−03* + 1.07E−03* + 1.30E−03† + 3.26E−03*
LST-Day ( ◦C) − 7.09E−04* − 1.58E−03*
LST-Night ( ◦C) − 3.72E−04 − 9.07E−04* − 3.73E−04
NDVI + 3.97E−05* + 4.91E−05* − 4.63E−05* − 3.56E−05* − 2.68E−05*
Precipitation (mm) + 6.68E−03* + 5.67E−03* + 3.44E−03* + 3.18E−03* + 4.37E−03*

Fig. 4   Mann–Kendall test and Sen’s Slope were used to analyze the percentage of LULC classes over the span of 2001–2022, with significant 
slopes shown at 90% confidence level or higher (* for 99%, † for 95%)
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4 � Discussion

The relationship between NDVI and both LST-Day and 
LST-Night was found to be influenced by elevation. Specifi-
cally, in regions covered by Grasslands, it was observed that 
the correlation between NDVI and LST-Day was somewhat 
diminished at higher altitudes when compared to lower alti-
tudes. Conversely, the correlation between NDVI and LST-
Night exhibited greater strength at higher altitudes within 
Grassland areas in contrast to their lower-altitude counter-
parts. Similar trends were discerned in areas characterized 
as Savannas. However, in forested areas, the correlations 
between NDVI and both LST-Day and LST-Night demon-
strated consistent patterns across both high and low altitudes. 
This elevation-mediated effect underscores the importance 
of considering local topographical features when assessing 
the impact of climate on vegetation, as higher altitudes may 
exhibit distinct responses to temperature variations. Sev-
eral studies have argued that higher altitudes may exhibit 

different responses to temperature fluctuations compared to 
lower altitudes, contingent upon the prevailing land cover 
types (Karnieli et al. 2019; Huang et al. 2020; Lu et al. 2023; 
Dewan and Corner 2012).

Normalized Cross-Correlation (NCC) analyses were 
conducted to explore the temporal dynamics of NDVI and 
climate variables. The analysis revealed that NDVI consist-
ently preceded the Relative Humidity Average by about 
3.5–4 months across Deciduous Needleleaf Forests (DNF), 
Evergreen Needleleaf Forests (ENF), pen Shrublands (OS), 
Permanent Wetlands (PW), Savannas (S), and Woody Savan-
nas (WS). This implies that NDVI could affect the relative 
humidity with a seasonal lag, as NDVI could alter the soil 
moisture and the water stress of plants. Higher NDVI values 
could signal increased vegetation growth in the next season, 
while lower NDVI values could indicate decreased vegeta-
tion growth. This suggests a seasonal gap between vegetation 
and humidity. Other studies have also reported similar find-
ings (Han et al. 2023; Chanda et al. 2024; Xie et al. 2023; 
Brindle et al. 2023). On the other hand, LST-Day exhibited 

Table 3   Accuracy results of 
CatBoost regressor models on 
train, validation, and test sets for 
NDVI by each LULC class

The mean squared error (MSE), mean absolute error (MAE), and R2 (R-squared) respectively measure 
the discrepancy between predicted and actual values. Smaller values of MSE and MAE are indicative of 
enhanced accuracy. The maximum achievable accuracy for R-squared is 1

LULC class Train Validation Test

MSE MAE R2 MSE MAE R2 MSE MAE R2

Croplands 0.002 0.032 0.969 0.004 0.051 0.944 0.003 0.045 0.932
Cropland/Natural Vegetation Mosaics 0.003 0.039 0.966 0.007 0.055 0.934 0.005 0.042 0.941
Deciduous Broadleaf Forests 0.002 0.035 0.971 0.004 0.043 0.955 0.002 0.037 0.973
Deciduous Needleleaf Forests 0.002 0.028 0.980 0.004 0.045 0.953 0.002 0.037 0.970
Evergreen Needleleaf Forests 0.002 0.029 0.955 0.002 0.038 0.942 0.002 0.029 0.957
Grasslands 0.001 0.029 0.961 0.002 0.033 0.955 0.002 0.036 0.931
Mixed Forests 0.003 0.039 0.960 0.003 0.035 0.957 0.002 0.035 0.965
Open Shrublands 0.001 0.023 0.985 0.003 0.033 0.969 0.003 0.032 0.969
Permanent Wetlands 0.001 0.020 0.984 0.002 0.029 0.963 0.001 0.023 0.983
Savannas 0.001 0.025 0.982 0.003 0.033 0.966 0.002 0.033 0.972
Woody Savannas 0.002 0.026 0.977 0.002 0.034 0.970 0.003 0.039 0.965

Fig. 5   Feature Importance 
Analysis for NDVI Modeling 
which summarizes the feature 
importance results obtained 
from 11 models developed 
using the CatBoost Regressor 
for modeling NDVI. The analy-
sis focuses on the influence of 
four environmental variables: 
Relative Humidity Average (%), 
LST-Day ( ◦C), LST-Night ( ◦C), 
and precipitation (mm)
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a lead over NDVI of approximately two weeks, indicating 
a short-term temporal influence of daytime temperature 
patterns on NDVI. For most land cover types, LST-Night 
demonstrated minimal temporal lag with NDVI. However, 
in regions characterized by lower-density vegetation, such 
as Open Shrublands, Permanent Wetlands, Savannas, and 
Woody Savannas, LST-Night led NDVI by approximately 
two weeks. The short-term lag in the influence of LST-Day 
on NDVI could be attributed to its reflection of solar radia-
tion and the photosynthetic activity of plants. Higher LST-
Day appears to enhance NDVI in the subsequent weeks, 
while lower LST-Day has the opposite effect. These find-
ings align with similar observations reported in other stud-
ies (Dastour et al. 2022; Wang et al. 2003). NDVI exhibited 
a temporal lag of 2–4 weeks behind Precipitation across 
diverse land cover types, indicating a pattern of vegetation 
greenness change following precipitation events within the 
same timeframe. Precipitation leads NDVI by 2–4 weeks 
because precipitation provides water and nutrients for 
plant growth, and reduces soil moisture stress and drought 
(Soomro et al. 2021). These findings align with previous 
studies (Dastour et al. 2022; Wang et al. 2003; Ji and Peters 
2005; Ndehedehe et al. 2021; Yuan et al. 2015; Garai et al. 
2022). The results showed that different climate variables 
influenced NDVI with different temporal lags, depending on 
the land cover type. This means that the vegetation response 
to climate change was not uniform across the region, but 
varied according to the characteristics of the vegetation and 
the local climate conditions.

Significant trends in land cover dynamics were discerned 
throughout the study period. Notably, Cropland areas, 
covering an average of just under 20% of Alberta during 
2001–2022, manifested a consistent increase in coverage, 
paralleling an ascending trend in relative humidity. How-
ever, during the years 2001 and 2002, Cropland coverage 
deviated below the projected trendline, coinciding with a 
substantial reduction in humidity, LST-Day, LST-Night, 
and precipitation. In contrast, Evergreen Needleleaf forest 
areas, which encompassed approximately 14.5% of Alberta 
during 2001–2022, exhibited an upward trend in cover-
age, concomitant with increased precipitation. Notably, the 
years 2001 and 2002 featured higher Evergreen Needleleaf 
forest coverage, corresponding to significantly high NDVI 
values. Conversely, a minor dip in coverage around 2006 
aligned with significantly high LST-Day and LST-Night 
values. Likewise, Grasslands, comprising about 13.8% of 
Alberta during 2001–2022, experienced a diminishing cov-
erage trend, notwithstanding increasing humidity and pre-
cipitation, yet accompanied by declining LST-Day. Notable 
higher coverage percentages in 2000 and 2001 coincided 
with markedly lower humidity, LST-Night, and precipita-
tion. Lastly, Woody Savannas, accounting for roughly 29% 
of Alberta, on average, during 2001 and 2022, displayed 

increased coverage around 2006, surpassing the trendline, 
while concurrently exhibiting elevated LST-Day and LST-
Night values. Nevertheless, over the study period, a declin-
ing trend in Woody Savanna’s coverage was evident, align-
ing with decreasing LST-Night and NDVI values. These 
trends provide insights into the complex interplay between 
land cover changes and climatic factors in Alberta, empha-
sizing the sensitivity of different land cover types to varia-
tions in humidity and temperature.

NDVI may have been influenced by LST-Day and LST-
Night, with average importance values of 37.42% and 
40.35%, respectively. This shows the significant role of 
temperature variables in NDVI modeling, consistent with 
the results from Correlation Analyses and Trend Analyses. 
On the other hand, Precipitation may have had a much lower 
impact and was only used in NDVI modeling for Deciduous 
Needleleaf Forests, Grasslands, and Permanent Wetlands, 
with an average importance value of 5.15%. The variations 
in NDVI across diverse land cover types could potentially 
be predominantly influenced by temperature-related factors, 
thereby playing a crucial role in comprehending vegetation 
dynamics. The significance of LST-Day and LST-Night as a 
key climate variables in NDVI modeling suggested the rel-
evance of temperature-related factors in shaping vegetation 
patterns across various land cover types. This implication 
could underscore the ecological importance of temperature 
regulation within Alberta’s ecosystems.

Atmospheric conditions (e.g., clouds, dust, fog, smoke) 
can degrade the quality and accuracy of the remote sensing 
data, which is one of the limitations of this study. Another 
limitation is the low resolution (spatial, temporal, or spec-
tral) of the remote sensing data, which can limit its repre-
sentation of the object or the environment in detail, change, 
or variation. Moreover, the study only spanned a 22-year 
period, and more data and a longer-term analysis could 
potentially improve the results.

5 � Conclusions

In summary, this study has provided clarity on the intricate 
relationship between the Normalized Difference Vegetation 
Index (NDVI) and key environmental variables, namely 
Land Surface Temperature (LST) during the daytime (LST-
Day) and nighttime (LST-Night), along with Precipitation, 
across diverse land cover types in the Alberta region.

Elevation affects the correlation between NDVI and both 
LST-Day and LST-Night depending on the land cover type. 
In Grasslands and Savannas, higher altitudes weaken the 
NDVI-LST-Day correlation but strengthen the NDVI-LST-
Night correlation. In forests, the NDVI-LST correlations are 
consistent across altitudes. This shows that local topogra-
phy influences how vegetation responds to climate, as higher 
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altitudes may have different temperature sensitivities than 
lower altitudes.

Temporal dynamics were investigated using Normal-
ized Cross-Correlation (NCC) analyses. The examination 
indicated a lead time of approximately 3.5–4 months for 
the NDVI preceding the Relative Humidity Average. This 
pattern was observed across various ecosystems, namely 
Deciduous Needleleaf Forests (DNF), Evergreen Needleleaf 
Forests (ENF), Open Shrublands (OS), Permanent Wetlands 
(PW), Savannas (S), and Woody Savannas (WS). LST-Day 
exhibited a lead over NDVI of about 2 weeks, indicating a 
short-term temporal influence of daytime temperature pat-
terns on NDVI. NDVI exhibited a temporal lag of 2–4 weeks 
behind Precipitation across diverse land cover types.

Significant trends in land cover dynamics were observed 
in Alberta from 2001 to 2022. Cropland areas, constitut-
ing nearly 20% of the region, consistently increased along-
side rising relative humidity. However, deviations occurred 
in 2001 and 2002, aligning with reductions in humidity, 
LST-Day, LST-Night, and precipitation. Evergreen Needle-
leaf forests, covering approximately 14.5%, exhibited an 
upward trend linked to increased precipitation, with nota-
ble peaks in 2001 and 2002 corresponding to high NDVI 
values. Grasslands, comprising 13.8%, showed diminish-
ing coverage despite rising humidity and precipitation but 
accompanied by declining LST-Day. Woody Savannas, 
accounting for around 29%, displayed increased coverage in 
2006, surpassing the trendline, with elevated LST-Day and 
LST-Night values. Despite this, a declining trend in Woody 
Savanna’s coverage was evident, correlating with decreasing 
LST-Night and NDVI values over the study period. These 
findings underscore the intricate relationship between land 
cover changes and climatic factors in Alberta, emphasizing 
the sensitivity of various land cover types to variations in 
humidity and temperature.

Temperature variables (LST-Day and LST-Night) had 
high importance values (37.42% and 40.35%) in NDVI mod-
eling, matching the Correlation and Trend Analyses results. 
Precipitation had a low importance value (5.15%) and was 
only used for some land cover types. NDVI variations across 
land cover types could be mainly driven by temperature-
related factors, which are important for understanding veg-
etation dynamics and patterns. This implies that temperature 
regulation is ecologically vital for Alberta’s ecosystems.

The study investigated how different vegetation types, 
elevation, and climate variables interacted to affect the Nor-
malized Difference Vegetation Index (NDVI), a measure of 
vegetation health and productivity. The study could provide 
valuable information for conservation, impact assessment, 
and decision support for climate adaptation and mitigation.

Future research directions could include exploring the 
potential impacts of climate change on vegetation dynam-
ics in Alberta, especially in relation to the frequency and 

intensity of droughts and wildfires. Additionally, more stud-
ies are needed to investigate the interactions between veg-
etation and other biophysical factors, such as soil moisture, 
albedo, and carbon sequestration. Furthermore, the applica-
tion of machine learning techniques, such as CatBoost, could 
be extended to other regions and ecosystems, as well as to 
multi-temporal and multi-spectral data sources, to improve 
the accuracy and robustness of NDVI modeling and its 
interpretations.
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