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Abstract This study investigates the application of marching scheme and mollification
method to solve a one-dimensional inverse ablation-type moving boundary problem. The
problem is considered with noisy data. A regularization method based on a marching scheme
and discrete mollification approach is developed to solve the proposed problem and the sta-
bility and convergence of the numerical solution are proved. Some numerical experiments
are presented to demonstrate the attractiveness and feasibility of the proposed approach. It is
shown that the results are in good agreement with exact solutions.
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1 Introduction

Moving boundary problemsmodel many real world and engineering situations in which there
is freezing ormelting causing a boundary to change in time (Minkowycz et al. 2009; Andrews
and Atthey 1975; Carslaw and Jaeger 1959; Campbell and Humayun 1999; Ang et al. 1996).
These kinds of problemsdescribe a lot of phenomena, such as solidification ofmetals, freezing
of water and food, crystal growth, casting, welding, melting, ablation, etc. These problems
are often known as direct and inverse Stefan problems (Ang et al. 1996; Storti 1995; Mitchell
and Vynnycky 2012). The direct Stefan problem requires determining both the temperature
and the moving boundary interface when the initial and boundary conditions, and the thermal
properties of the heat conducting body are known. Conversely, the inverse Stefan problems
require determining the initial and/or boundary conditions, and/or thermal properties from
additional information which may involve the partial knowledge or measurement of the
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62 M. Garshasbi, H. Dastour

moving boundary interface position, its velocity in a normal direction, or the temperature
at selected interior thermocouple of the domain (Minkowycz et al. 2009; Ang et al. 1996;
Mitchell and Vynnycky 2012; Molavi et al. 2011; Kwag et al. 2004; Johansson et al. 2011;
Ang et al. 1996; Grzymkowski and Slota 2006).

Moreover, the inverse Stefan problems belong to a very important class of improperly
posed problems of control theory which have many engineering applications. For example,
in the technology of refining a material by means of recrystallization, one is interested in
solving the inverse Stefan problem which consists of finding the temperature and heat flux
at the fixed surface which guarantee the flatness of the crystallization front, see Minkowycz
et al. (2009) and Carslaw and Jaeger (1959). We are interested in the inverse problem of
parameter identification in a one-phase ablation-type moving boundary problem. The term
ablation refers to the removal of material from the surface of an object by vaporization,
chipping, or other erosive processes (Storti 1995; Mitchell and Vynnycky 2012; Molavi et al.
2011). The term occurs in a lot of physical situations. For example, ablative materials can
sustain very high temperatures in which surface thermochemical processes are significant
enough to cause surface recession. Existence of the moving boundary over a wide range
of temperatures, temperature-dependent thermophysical properties of ablators, and no prior
knowledge about the location of the moving surface augment the difficulty for predicting
the exposed heat flux at the receding surface of ablator (Storti 1995; Mitchell and Vynnycky
2012).

In this work, an inverse ablation-type moving boundary problem is analyzed numerically
using a regularization method based on the discrete mollification method and space marching
scheme. The discrete mollificationmethod is a convolution-based filtering procedure suitable
for the regularization of ill-posed problems and for the stabilization of explicit schemes for
the solution of partial differential equations (PDEs) (Murio 1993, 2007, 2002; Meja et al.
2001; Acosta and Meja 2008, 2009; Garshasbi et al. 2012).

The outline of this paper is as follows: In Sect. 2, the mathematical formulation of our
interest inverse problem is discussed. In Sect. 3, themollificationmethod is introduced briefly.
In Sect. 4, a numerical procedure based on marching and mollification methods is developed
to solve the proposed problem. Section 5 contains the convergence and stability analysis of
the introduced numerical method. In Sect. 6, some numerical examples are given and solved
with the proposed method. The paper ends with conclusions in Sect. 7.

2 Description of the inverse problem

2.1 Physical interpretation

As a physical description of our interest problem, we consider a one-dimensional slab of
thickness l initially at the temperature ϕ(x) (Molavi et al. 2011). The surface of the slab at
x = 0 is exposed to an unknown temperature p(t), while the other surface at x = s(t) is
exposed to temperature and transient heat flux q1(t) and q2(t), respectively. As the slab is
heated, it can chemically erode, oxidize, or change phase at the exposed surface, depending
on the incident heat flux variation and thematerial characteristics. Hence, a moving boundary
will appear in the considered domain. Generally with the presence of a source term as f (x, t),
the mathematical formulation for the physical problem considered here can be considered
as:

ρCp(T )Tt = KTxx + ρCp(T )H(t)Tx + f (x, t), 0 < x < s(t), 0 < t < T f , (1)
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T (0, t) = p(t), 0 < t < T f , (2)

T (s(t), t) = q1(t), 0 < t < T f , (3)

KTx (s(t), t) = q2(t), 0 < t < T f , (4)

T (x, 0) = ϕ(x), 0 ≤ x ≤ s(0), (5)

where K shows the thermal conductivity and here is considered to be constant and the
coefficients ρ, Cp and H show the thermophysical properties of our interest environment.

2.2 Inverse problem formulation

In the direct one-dimensional Stefan problem, we are interested to determine the moving
boundary given by x = s(t) and the temperature solution u(x, t) in the heat conduction
domain D = (0, s(t)) × (0, T ], where T > 0 is a given arbitrary final time of interest.

In the problem (1)–(4), it is supposed that the moving boundary s(t) is a known function.
We are interested in the problem, which consists of determining two functions u(x, t) and
p(t) satisfying these equations. This one-dimensional moving boundary problem can be
transformed to a fixed boundary problem by a simple stretching of the spatial coordinate
according ζ = x/s(t). Introducing dimensionless variables and parameters, the problem
(1)–(4) is transformed into the following dimensionless form:

ρCp(u)s2(t)ut (ζ, t) = Kuζ ζ (ζ, t) + ρCp(u)s(t)

(
ζ
ds

dt
+ H(t)

)
uζ (ζ, t)

+ s2(t) f (ζ s(t), t), 0 < ζ < 1, 0 < t < T f , (6)

u(0, t) = p(t), 0 < t < T f , (7)

u(1, t) = q1(t), 0 < t < T f , (8)

Kuζ (1, t) = q2(t), 0 < t < T f , (9)

u(ζ, 0) = ϕ(ζ s(0)), 0 < ζ < 1. (10)

In sequence, we will introduce a numerical marching scheme based on mollification
method to find the solution of the problem (6)–(10) under the assumption that q1(t), q2(t)
and ϕ(t) are only known approximately as qε

1(t), q
ε
2(t) and ϕε(t) such that

‖ϕ(t) − ϕε(t)‖∞ ≤ ε

‖q1(t) − qε
1(t)‖∞ ≤ ε

‖q2(t) − qε
2(t)‖∞ ≤ ε.

Because of the presence of the noise in the problem’s data, we first stabilize the problem
using the mollification method.

3 A brief summery of discrete mollification

Let δ > 0, p̂ > 0, Ap̂ = (
∫ p̂
− p̂exp(−s2)ds)−1, I = [0, 1] and Iδ = [ p̂δ, 1− p̂δ]. Notice that

the interval Iδ is nonempty whenever p̂ < 1/2δ.
Furthermore, suppose K = {x j : j ∈ Z, 1 ≤ j ≤ M} ⊂ I , satisfying

x j+1 − x j > d > 0, j ∈ Z,
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and

0 ≤ x1 < x2 < · · · < xM ≤ 1,

where Z is the set of integers and d is a positive constant. Now if G = {g j } j∈Z be a discrete
function defined on K and s j = (1/2)(x j + x j+1), j ∈ Z, Then, the discrete δ−mollification
of G is defined by Murio (1993, 2002):

JδG(x) =
M∑
j=1

(∫ s j

s j−1

ρδ(x − s)ds

)
g j ,

where

ρδ, p̂(x) =
{
Ap̂δ

−1 exp
(
− x2

δ2

)
, |x | ≤ p̂δ,

0, |x | > p̂δ.

Notice that,
∑M

j=1(
∫ s j
s j−1

ρδ(x − s)ds) = ∫ p̂δ
− p̂δρδ(s)ds = 1.

Let �x = sup j∈Z(x j+1 − x j ), some useful results of the consistency, stability, and
convergence of discrete δ-mollification are as follows (Murio 1993, 2007, 2002; Meja et al.
2001):

Theorem 1 1. If g(x) is uniformly Lipschitz in I and G = {g j = g(x j ) : j ∈ Z} is the
discrete version of g, then there exists a constant C, independent of δ, such that

‖JδG − g‖∞,Iδ ≤ C(δ + �x).

Moreover, if g′(x) ∈ C(I ) then

∥∥(JδG)′ − g′∥∥∞,Iδ
≤ C

(
δ + �x

δ

)
.

2. If the discrete functions G = {g j : j ∈ Z} and Gε = {gε
j : j ∈ Z}, which are defined on

K , satisfy ‖G − Gε‖∞,K ≤ ε, then we have∥∥JδG − JδG
ε
∥∥∞,Iδ

≤ ε,

∥∥(JδG)′ − (JδG
ε)′

∥∥∞,Iδ
≤ Cε

δ
.

3. If g(x) is uniformly Lipschitz on I , let G = {g j = g(x j ) : j ∈ Z} be the discrete
version of g and Gε = {gε

j : j ∈ Z} be the perturbed discrete version of g satisfying
‖G − Gε‖∞,K ≤ ε. Then∥∥JδGε − Jδg

∥∥∞,Iδ
≤ C(ε + �x),

and ∥∥JδGε − g
∥∥∞,Iδ

≤ C(ε + δ + �x).

Moreover, if g′(x) ∈ C(I ) then,
∥∥∥(JδG

ε)
′ − (Jδg)

′∥∥∥∞,Iδ
≤ C

δ
(ε + �x),

∥∥(JδG
ε)′ − g′∥∥∞,Iδ

≤ C

(
δ + ε

δ
+ �x

δ

)
.
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Denoting the centered difference operator by D, i.e., D f (x) = f (x+�x)− f (x−�x)
2�x . Then,

we have the following results (Murio 1993, 2002):

Theorem 2 1. If g′ ∈ C1(R1) and G = {g j = g(x j ) : j ∈ Z} is the discrete version of g,
with G and Gε satisfying ‖G − Gε‖∞,K ≤ ε, then

∥∥D(JδG
ε) − (Jδg)

′∥∥∞ ≤ C

δ
(ε + �x) + Cδ(�x)2,

∥∥D(JδG
ε) − g′∥∥∞ ≤ C

(
δ + ε

δ
+ �x

δ

)
+ Cδ(�x)2.

2. Suppose G = {g j : j ∈ Z} is a discrete function defined on a set K , and Dδ
0 is a

differentiation operator defined by Dδ
0(G) = D(JδG)(x) |K , then

∥∥Dδ
0(G)

∥∥∞,K ≤ C

δ
‖G‖∞,K .

4 Regularized problem and the marching scheme

The regularized problem is formulated as follows. Determine v(x, t) and p(t) from the
following problem:

ρCp(v)s2(t)vt (ζ, t) = Kvζζ (ζ, t) + ρCp(v)s(t){ζ ds
dt

+ H(t)}vζ (ζ, t)

+ s2(t) f (ζ s(t), t), 0 < ζ < 1, 0 < t < T f , (11)

v(1, t) = JδM (q1(t)), 0 < t < T f , (12)

Kvζ (1, t) = Jδ∗
M
(q2(t)), 0 < t < T f , (13)

v(ζ, 0) = Jδ′
i
(ϕ(ζ s(0))), 0 < ζ < 1, (14)

v(0, t) = p(t), 0 < t < T f . (15)

where Jδ(.) shows the mollified function with respect to the mollification radii δ and the radii
of mollifications, δ0, δ∗

0 and δ′ are chosen automatically using the GCVmethod (Murio 1993,
2007). Let M and N be positive integers, h = �x = 1/M and k = �t = T f /N be the

parameters of the finite differences discretization of I = [0, 1]. Let f1(ζ, t) = f
(
ζ s(t), t

)
.

We introduce the following discrete functions:
Ui,n : the discrete computed approximations of v(ih, nk), Wi,n : the discrete computed

approximations of vt (ih, nk), Qi,n : the discrete computed approximations of vx (ih, nk).
The algorithm of space marching scheme may be written as follows:

1. Select δM , δ∗
M and δ′.

2. Perform mollification of ϕε and qε in the interval [0, 1].
UM,n = JδM q

ε
1(nk) (n 	= 0), Ui,0 = Jδ′

i
ϕε(ih s(0)), i ∈ {0, 1, . . . , M}

QM,n = 1
K JδM q

ε
2(nk).

3. Perform mollified differentiation in time of JδM q
ε
1(nk). Set

WM,n = Dt (JδM q
ε
1(nk)) (n 	= 0), WM,0 = Dt (Jδ′

M
ϕε(0)).

4. Initialize i = M . Do while i ≥ 1,

Ui−1,n = Ui,n − hQi,n, (n 	= 0), (16)
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Qi−1,n = Qi,n− h

K

[
ρCp(Ui,n)

(
(s(nk))2Wi,n−s(nk)

(
(ih)

ds

dt
(nk)+H(nk)

)
Qi,n

)

− (s(nk))2 f1(ih, nk)

]
, (17)

Wi−1,n = Wi,n − hDt

(
Jδ∗

i
Qi,n

)
(18)

where Dt denotes the centered difference operator with respect to t . From now on, if Xi,n is
a discrete function, we denote |Xi | = maxn |Xi,n |. We also consider u(x, t) ∈ C2(I × I ).

5 Stability and convergence analysis

In this section, we analyze the stability and convergence of the marching scheme (16)–(17).

Theorem 3 For the marching scheme (16)–(17), there exists a constant �, such that

max{|U0|, |Q0|, |W0|, M f } ≤ �max{|UM |, |QM |, |WM |, M f }. (19)

Proof Let |δ|−∞ = mini (δi , δ∗
i , δ

′
i ), M f = max(ζ,t)∈[0,1]×[0,1]{| f1(ζ, t)|}, Ms =

maxt∈[0,1]{s(t)}, Ks = maxt∈[0,1]{ ds(t)dt }, Mh = maxt∈[0,1]{H(t)} and B = maxu{Cp(u)}.
Using the definition of Dt and Theorem 2, one may derive

|Dt (Qi,n)| ≤ C

|δ|−∞
|Qi,n |, (20)

where C is a constant. Now using (17) and (20) we have

|Wi−1,n | ≤
(
1 + h

C

|δ|−∞

)
max{|Qi,n |, |Wi,n |}. (21)

Also from (16) and (17), we have

|Ui−1,n | ≤ (1 + h)max{|Ui,n |, |Qi,n |}, (22)

|Qi−1,n | ≤ |Qi,n | + h

K

(
ρB(M2

s |Wi,n | + Ms(Ks + Mh)|Qi,n |) + M2
s M f

)

≤
(
1 + (ρBMs(Ms + Ks + Mh) + M2

s )
h

K

)
max{|Qi,n |, |Wi,n |, M f }. (23)

Let Cδ = max
{
1, 1

K (ρBMs(Ms + Ks + Mh) + M2
s ), C

|δ|−∞

}
, from (21)–(23), we obtain

max{|Ui−1|, |Qi−1|, |Wi−1|, M f } ≤ (1 + hCδ)max{|Ui |, |Qi |, |Wi |, M f },
and iterating this last inequality M times, we have

max{|U0|, |Q0|, |W0|, M f } ≤ (1 + hCδ)
M max{|UM |, |QM |, |WM |, M f }

which implies

max{|U0|, |Q0|, |W0|, M f } ≤ exp(Cδ)max{|UM |, |QM |, |WM |, M f }.
Letting � = exp(Cδ) completes the proof of this statement. ��
Theorem 4 For the marching schemes (16)–(17), for fixed δ as h, k and ε tend to zero,
the discrete mollified solution converges to the mollified exact solution restricted to the grid
points.
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Proof From the definitions of discrete error functions, let

�Ui,n = Ui,n − v(ih, nk), �Qi,n = Qi,n − vx (ih, nk), �Wi,n = Wi,n − vt (ih, nk).

Using Taylor series, we obtain some useful equations satisfied by the mollified solution v,
namely,

v((i − 1)h, nk) = v(ih, nk) − hvx (ih, nk) + O(h2),

vx ((i − 1)h, nk) = vx (ih, nk) − h

K

[
ρCp(v(ih, nk))

(
(s(nk))2vt (ih, nk) − s(nk)

×
(
(ih)

ds

dt
(nk)+H(nk)

)
vx (ih, nk)

)
−(s(nk))2 f1(ih, nk)

]
+O(h2),

vt ((i − 1)h, nk) = vt (ih, nk) − h

(
d

dt
vx (ih, nk)

)
+ O(h2).

On the other hand, one may write

�Ui−1,n = �Ui,n + (Ui−1,n −Ui,n) − (v((i − 1)h, nk) − v(ih, nk))

= �Ui,n − h�Qi,n + O(h2), (24)

�Qi−1,n = �Qi,n + (Qi−1,n − Qi,n) − (vx ((i − 1)h, nk) − vx (ih, nk))

= �Qi,n − h

K

[
ρ(s(nk))2(wi,nCp(Ui,n) − vt (ih, nk)Cp(v(ih, nk)))

− ρ(s(nk)((ih)
ds

dt
(nk) + H(nk))(Qi,nCp(Ui,n) − vx (ih, nk)Cp(v(ih, nk)))

]

≤ �Qi,n − h

K

[
ρB�Wi,n − ρ(s(nk)((ih)

ds

dt
(nk) + H(nk))B�Qi,n

]
+ O(h2),

(25)

�Wi−1,n = �Wi,n + (Wi−1,n − Wi,n) − (vt ((i − 1)h, nk) − vt (ih, nk))

= �Wi,n − h(Dt (Jδ∗
i
Qi,n) − vxt (ih, nk)) + O(h2). (26)

Now if in equalities (24)–(26) we use the error estimates of discrete mollification, the fol-
lowing inequalities are derived

|�Ui+1,n | ≤ |�Ui,n | + h|�Qi,n | + O(h2),

|�Qi+1,n | ≤ |�Qi,n | + h

K
(ρBMs(Ms |�Wi,n | + (Ks + Mh)|�Qi,n |)) + O(h2)

|�Wi+1,n | ≤ |�Wi,n | + h

(
C

|�Qi,n | + k

|δ|−∞
+ Cδ∗k2

)
+ O(h2).

Suppose

�i = max{|�Ui,n |, |�Wi,n |, |�Qi,n |},
C0 = max

{
1,

1

K
(ρBMs(Ms + Ks + Mh)),

C

|δ|−∞

}
, C1 = ck

|δ|−∞
+ Cδ∗k2.

Then, we obtain

�i−1 ≤ (1 + hC0)�i + hC1 + O(h2) ≤ (1 + hC0)(�i + C1) + O(h2), (27)

and after L iterations

�L ≤ exp(C0)(�M + C1). (28)
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Moreover from

|�UM,n | ≤ C(ε + k),

|�QM,n | ≤ C(ε + k),

|�WM,n | ≤ C

δM
(ε + k) + Cδk

2,

we see that when ε, h, and k tend to 0,�M and C1 tend to 0. Consequently, (�M +C1) tends
to 0 and so does �0 and this completes the proof of this theorem. ��

6 Numerical results and discussion

To examine the capabilities of the proposedmethod, some numerical examples are considered
in this section. An excellent way to check the accuracy of the numerical calculations is to
compare them to the exact solutions. In all cases, without loss of generality, we set p̂ = 3
(see Murio 1993, 2007, 2002; Meja et al. 2001). The radii of mollification are always chosen
automatically using the mollification and GCV methods.

Discretized measured approximations of boundary data are modeled by adding random
errors to the exact data functions. For example, for the boundary data function φ(x, t), its
discrete noisy version is generated by

φε
j,n = φ(ih, nk) + ε j,n, i = 0, 1, . . . , N , n = 0, 1, . . . , T,

where the(ε j,n)’s are Gaussian random variables with variance ε2.
The errors exact and approximate solutions are measured by the relative weighted l2-norm

given by:
[
(1/(M + 1)(N + 1))
M

i=0 
N
j=0|v(ih, jl) −Ui, j |2

]1/2
[
(1/(M + 1)(N + 1))
M

i=0 
N
j=0|v(ih, jl)|2

]1/2 .

All numerical results have been produced by MATLAB software.

Example 1 As the first test case, in the problem (1)–(4) consider

ρ = 1, Cp(T ) = T, K = 1, H(t) = 1, s(t) = √
t,

f (x, t) = 2 sin
(
t2 + x2 + 1

) − t sin
(
2 t2 + 2 x2 + 2

) + x sin
(
2 t2 + 2 x2 + 2

)
+ 4 x2 cos

(
t2 + x2 + 1

)
,

q1(t) = cos
(
t2 + 1

)
, q2(t) = 0,

ϕ(x) = cos(1) .

The exact solution may be derived as:

T (x, t) = cos
(
t2 + x2 + 1

)
, (x, t) ∈ [0, s(t)] × [0, 1]. (29)

Using the exact solution for T , one may write u(ζ, t) as:

u(ζ, t) = cos
(
t2 + t ζ 2 + 1

)
, (ζ, t) ∈ [0, 1] × [0, 1].

Table 1 highlights the relative l2 errors between the exact and computed u, ut and ux for
three different noise levels ε = 0.01, 0.001, 0.0001 when M = 64, 128, 256, 512 and
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Table 1 Relative l2 error norms
for Example 1

M N ε u ut uζ

64 64 0.0001 0.049877 0.056913 0.076219

128 128 0.0001 0.046497 0.05621 0.071306

256 256 0.0001 0.044996 0.053389 0.068895

512 512 0.0001 0.0446 0.052232 0.068369

64 64 0.001 0.049906 0.063412 0.076691

128 128 0.001 0.045848 0.063719 0.070531

256 256 0.001 0.045196 0.059979 0.068645

512 512 0.001 0.044518 0.053694 0.067408

64 64 0.01 0.054913 0.076445 0.076039

128 128 0.01 0.052183 0.076151 0.067892

256 256 0.01 0.05087 0.07527 0.065875

512 512 0.01 0.04901 0.073361 0.063888

Fig. 1 The comparison between the exact and approximate p(t) in three noise levels for Example 1

N = 64, 128, 256, 512. In this table, the l2 errors between the exact and computed u are
presented in column 4. Columns 5 and 6 include the l2 errors between the exact and computed
ut and ux . This table shows that increasing the amount of noise degreases the accuracy of
the computed results. Furthermore, in any noise level, increasing the number of mesh points
M and N degrease the amount of l2 errors.

The comparison between the exact and the computed boundary function p(t) for M =
N = 64 and ε = 0.01, 0.001, 0.0001 is shown in Fig. 1. It can be found from this figure that
although the measurement errors are introduced, the inverse method proposed in this work
can also obtain a satisfactory solution.

To explore the dependence of errors of the solutions on the noise levels, the relative l2
errors between the exact and computed p(t) with respect to the M are shown in Fig. 2 for
three noise levels when N = 256.

As we expected, the relative l2 errors between the exact and numerical results were grad-
ually decreased by increasing the mesh points.
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Fig. 2 The relative l2 errors between the exact and computed p(t) for three levels of noise with respect to
the number of mesh points M when N = 256 for Example 1

Example 2 As another test case, in the problem (1)–(4) we assume

ρ = 1, Cp(T ) = T 2, K = 1, H(t) = 1, s(t) = 1

t + 2
,

f (x, t) = −2 tanh(t + x + 1)
(
tanh(t + x + 1)2 − 1

)
,

q1(t) = tanh

(
t + 1

t + 2
+ 1

)
, q2(t) = −

tanh
(
t + 1

t+2 + 1
)2 − 1

t + 2
,

ϕ(x) = tanh
( x
2

+ 1
)

.

The exact solution can be obtained as:

T (x, t) = tanh(t + x + 1) , (x, t) ∈ [0, s(t)] × [0, 1]. (30)

Using this solution, it is easy to find the exact solution for u(ζ, t) as:

u(ζ, t) = tanh

(
t + ζ

t + 2
+ 1

)
, (ζ, t) ∈ [0, 1] × [0, 1].

The relative l2 errors for computing u, ut and ux for three different noise levels ε =
0.01, 0.001, 0.0001 when M = 64, 128, 256, 512 and N = 64, 128, 256, 512 are
shown in Table 2. Similar to the Table 1, in this table, columns 4, 5 and 6 indicate the l2 errors
between the exact and computed u, ut and ux , respectively. This table shows that increasing
the noise level degreases the accuracy of the computed results.

The exact and computed p(t) for M = N = 64 and ε = 0.01, 0.001 and 0.0001 are
shown in Fig. 3. From the three curves in this figure, one may see that when the amount
of noise is considered small as ε = 0.01, 0.001 and 0.0001, the numerical and analytical
solutions are close to each other.

Figure 4 demonstrates the dependence of relative l2 errors on the noise levels to compute
p(t). In this figure for three different noise levels ε = 0.01, 0.001 and 0.0001, the relative l2
error is plotted with respect to the number of mesh points M when N = 256. In this example,
we see that increasing the number of mesh points has not a considerable effect on the amount
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Table 2 Relative l2 error norms
for Example 2

M N ε v vt vζ

64 64 0.0001 0.00033448 0.013541 0.021461

128 128 0.0001 0.00049445 0.013932 0.023045

256 256 0.0001 0.00057725 0.018173 0.024004

512 512 0.0001 0.00061985 0.021169 0.024973

64 64 0.001 0.00058512 0.02624 0.023947

128 128 0.001 0.00081867 0.032996 0.027673

256 256 0.001 0.00098191 0.050765 0.033719

512 512 0.001 0.0010456 0.061915 0.03563

64 64 0.01 0.0013711 0.12292 0.042667

128 128 0.01 0.0010493 0.065805 0.038562

256 256 0.01 0.0011946 0.051633 0.026394

512 512 0.01 0.0011558 0.16973 0.046342

Fig. 3 The comparison between the exact and approximate p(t) in three noise levels for Example 2

of relative l2 error. Whereas decreasing the amount of noise increases the accuracy of the
numerical results.

7 Conclusions

In this study, an explicit and unconditionally stable space marching finite difference method
has been implemented to solve a one-dimensional nonlinear inverse Stefan problem. Overall,
from the numerical results presented in this paper and in some previous studies (see Acosta
and Meja 2008, 2009), it can be concluded that the combination of discrete mollification
and explicit space-marching finite difference methods is a suitable technique for the identi-
fication of some unknown boundary functions in initial boundary value problems. Discrete
mollification is a stabilizer and accelerator for explicit numerical schemes which can be used
to solve many class of PDEs, such as hyperbolic conservation laws and parabolic equations
(Meja et al. 2001; Acosta and Meja 2008, 2009). The algorithm effectively restores stability
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Fig. 4 The relative l2 errors between the exact and computed p(t) for three levels of noise with respect to
the number of mesh points M when N = 256 for Example 2

with respect to perturbations in the data, which is essential to justify the introduction of the
inverse problem approaches. In comparison with some other approaches such as classical
finite difference schemes and finite element methods, the numerical procedure proposed in
this paper is easy to implement and avoids, for example, the necessity of solving systems of
nonlinear equations or least square problems. Changing the noise level did not seem to change
the shape of the approximation, except for t close to the final time T . It should be pointed out
that in the presence of noise, the ideal expected behavior of parameters and errors is: when h,
k and δ tend to zero, the error tends to zero too. However, many factors intervene and this is
not always the case (see Table 2). Only some values of h are appropriate to reduce the error.
It is important to recall that we are dealing with random noise and with automatic procedures
such as GCV for the selection of mollification parameters. Sometimes, these procedures do
not select optimal values. Fortunately, this happens only occasionally, as can be seen from
the reliability tests presented above. In addition, the numerical algorithm presented in this
study is only first-order accurate, so moderate errors should be expected.
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