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Abstract
Efficient and accurate numerical schemes for solving the Helmholtz equation are
critical to the success of various wave propagation–related inverse problems, for
instance, the full-waveform inversion problem. However, the numerical solution to
a multi-dimensional Helmholtz equation is notoriously difficult, especially when a
perfectly matched layer (PML) boundary condition is incorporated. In this paper, an
optimal 13-point finite difference scheme for the Helmholtz equation with a PML in
the two-dimensional domain is presented. An error analysis for the numerical approx-
imation of the exact wavenumber is provided. Based on error analysis, the optimal
13-point finite difference scheme is developed so that the numerical dispersion is
minimized. Two practical strategies for selecting optimal parameters are presented.
Several numerical examples are solved by the new method to illustrate its accuracy
and effectiveness in reducing numerical dispersion.

Keywords Helmholtz equation · Perfectly matched layer · Optimal finite difference
scheme · Numerical dispersion

1 Introduction

One of the popular numerical methods for solving the Helmholtz equation is the
finite difference method, and it has been used in numerous practical applications
where the analytical solution is not available. The finite differences method can be
considered as the classical and the most frequently applied method for the numerical
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simulation of wave propagation. The finite difference method can be used as an
efficient forward-modeling engine of full-waveform inversion (FWI), which is a
data-fitting procedure based on full-waveform modeling for extracting quantitative
information from seismograms [35]. In particular, in the frequency domain, numer-
ically solving the Helmholtz equation with high wavenumbers is a challenging task
in the field of computational mathematics [5, 6, 22, 24, 28, 37]. The main challenge
is that as the wavenumber increases, the accuracy of the numerical results usually
deteriorates, and the solution of the Helmholtz equation oscillates drastically. This
phenomenon is regarded as the pollution effect of high wavenumbers [20, 21, 37].
In particular, the pollution effect of high wavenumbers is almost inevitable in two-
and three-dimensional domains [20, 37]. Due to the pollution effect, the wavenumber
of the numerical solution is different from the exact wavenumber, which is known
as numerical dispersion [7]. Since the numerical dispersion is closely related to the
pollution effect, minimizing the numerical dispersion can effectively mitigate the
pollution effect [6, 22, 28].

Finite difference frequency domain (FDFD) modeling for the generation of syn-
thetic seismograms and cross-hole tomography has been an active field of research
since the 1980s [28]. Pratt and Worthington [27] developed the classical 5-point finite
difference scheme, which requires ten grid points per wavelength. However, this can
lead to a linear system with a huge and ill-conditioned matrix, especially for large
wavenumbers.

Furthermore, due to the limitation of the computing resources, artificial boundary
conditions are used to truncate the infinite computing domain into a finite domain.
However, boundary conditions on the artificial boundary are not available in gen-
eral. To specify the artificial boundary conditions, one must ensure that there is no
reflection at the artificial boundary. Theoretically speaking, artificial boundary con-
ditions should absorb waves of any wavelength and any frequency without reflection
[9]; however, an ideal artificial boundary condition should be computationally stable,
not require extensive computational resources, and have an acceptable level of accu-
racy [9]. Arguably, the most popular method is the perfectly matched layer which
was introduced by Bérenger in 1994 [3] and is used to eliminate artificial reflection
near the boundary. PML technique introduces an artificial layer with an attenuation
parameter around the interior area (the domain of interest). On the other hand, apply-
ing PML will modify the original Helmholtz equation and make it even more difficult
to solve, as existing numerical methods may fail to solve the modified Helmholtz
equation effectively and accurately. Moreover, Medvinsky et al. [23] compared and
analyzed a number of other absorbing boundary conditions for solving the Helmholtz
equation. For more details about PML, see [3, 14, 23, 30, 34].

In the past decades, many researchers devoted a great deal of efforts in the devel-
opment of optimal finite difference methods to resolve these issues. In 1996, Jo et al.
presented the rotated 9-point finite difference method which consists of linearly
combining the two discretizations of the second derivative operator on the classi-
cal Cartesian coordinate system and the 45◦ rotated system [22]. In 1998, Shin and
Sohn extended the idea of the rotated 9-point scheme to the 25-point formula, and
they obtained a group of optimal parameters by the singular-value decomposition
method [28]. Although the 25-point formula reduces the number of grid points per
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wavelength to 2, the resulting matrix’s bandwidth is much wider than that of the
9-point scheme. The rotated 9-point FDM was followed by another 9-point FDM,
which is consistent with PML [6]. The authors also proposed global and refined
choice strategies for choosing optimal parameters of the scheme based on minimizing
the numerical dispersion. This idea later was extended to the optimal 27-point finite
difference scheme for the 3D Helmholtz equation with PML [7]. The rotated 9-point
scheme was also extended to a generalized optimal 9-point scheme for the frequency-
domain scalar wave equation [5]. Moreover, in 2017, Cheng et al. [8] presented a new
dispersion minimizing finite difference method in which the combination weights are
determined by minimizing the numerical dispersion with a flexible selection strategy.

There has been a large number of researches on higher-order finite difference
schemes for the Helmholtz equation. In particular, various fourth-order methods for
time-harmonic wave propagation based on the angle of wave propagation were devel-
oped and presented by Harari et al. [19]. Furthermore, Singer et al. [29] constructed
and analyzed a fourth-order compact finite difference scheme which depends on uni-
form grids for the two-dimensional Helmholtz equation with constant wavenumber
and is less sensitive to the direction of the propagation. Moreover, an optimal com-
pact finite difference scheme whose parameters are chosen based on minimizing the
numerical dispersion was proposed by Wu [37]. Furthermore, Britt et al. [4] also
constructed a fourth-order accurate finite difference scheme for the variable coef-
ficient Helmholtz equation that reduces phase error compared with a second order.
As for sixth-order finite difference methods, Sutmann [31] derived sixth-order com-
pact finite difference schemes for the 2D and 3D Helmholtz equation with constant
coefficients. Interested readers are referred to [33, 38] for more details about sixth-
order finite difference schemes for the 2D and 3D Helmholtz equation. Nevertheless,
many of these higher-order schemes, in particular, compact finite difference schemes,
require the source term to be smooth enough to obtain higher-order accuracy, and
this is not always the case in many practical problems. A possible solution is to use
non-compact finite difference schemes that do not need this requirement. In 2019,
Dastour et al. [10] proposed two non-compact optimal finite difference schemes,
optimal 25-point and optimal 17-point finite difference schemes, for the Helmholtz
equation with PML. They demonstrated that the 17-point finite difference method is
inconsistent with the Helmholtz equation with PML and is impractical when different
spatial increments along the x-axis and z-axis are used.

Moreover, using finite difference schemes on many practical size problems, espe-
cially in two and three dimensional, often leads to huge linear systems that are usually
solved using a number of parallel and preconditioned iterative solvers [13, 16, 17].
Some of the popular methods for solving the generated linear systems are CARP-CG
[18], parallel sweeping preconditioner (PSP) [15, 26], and an unsymmetric-pattern
multifrontal (UMF) method for sparse LU factorization [11, 12].

In this paper, to further reduce the numerical dispersion, we combine the ideas
from [6] and [8] to develop an optimal 13-point finite difference method using point-
weighting strategy. The rest of this paper is organized as follows. In Section 2, we
construct an optimal 13-point finite difference scheme for the Helmholtz equation
with PML. We also prove that the 13-point scheme is pointwise consistent with the
Helmholtz equation with PML, and the scheme is at least second-order. In Section 3,

1111Numerical Algorithms (2021) 86:1109–1141



we analyze the error between the numerical and the exact wavenumbers and propose
refined and optimal choice strategies for choosing optimal parameters to minimize
the numerical dispersion. In Section 4, numerical experiments are given to demon-
strate the efficiency of the scheme. We show that the new method is accurate and
effective in reducing numerical dispersion. Finally, in Section 5, some conclusions of
this paper and possible future works are discussed.

2 Development of the new optimal 13-point finite difference scheme

In this work, we consider the numerical solution of the 2D Helmholtz equation with
PML given by [30, 34]:

∂

∂x

(
A (x, z)

∂

∂x
p (x, z)

)
+ ∂

∂z

(
B (x, z)

∂

∂z
p (x, z)

)
+C (x, z) k2 (x, z) p (x, z) = g̃ (x, z) , (1)

where k = 2πf/v is the wavenumber in which f and v represent the frequency and
the velocity, respectively, and p is the Fourier component of the wavefield pressure.
Moreover, A (x, z) = sz/sx, B (x, z) = sx/sz, and C (x, z) = sxsz in which sx =
1 − iσx/ω, sz = 1 − iσz/ω with ω = 2πf denotes the angular frequency, and

g̃ =
{

0, inside PML
g, outside PML

with g is the Fourier transform of the source function.
Here, σx and σz are usually chosen as differentiable functions depending on the

variables x and z only, respectively. For example, one may consider defining them as
follows:

σx =
{

2πa0fM

(
lx

LPML

)2
, inside PML,

0, outside PML,
(2)

σz =
{

2πa0fM

(
lz

LPML

)2
, inside PML,

0, outside PML,
(3)

where fM is the peak frequency of the source, LPML is the thickness of PML, and
lx and lz are the distance from the point (x, z) inside PML to the interface between
the interior region and PML region. Furthermore, a0 is a constant, and we choose
a0 = 1.79 according to the paper [39]. Equation (1) can be seen as a general form
of the Helmholtz equation with its corresponding PML, since in the interior domain
sx = 1 and sz = 1 lead to A = B = C = 1 and the two-dimensional Helmholtz
equation:

�p (x, z) + k2 (x, z) p (x, z) = g (x, z) , (4)

where � = ∂2/∂x2 + ∂2/∂z2 is the Laplacian.
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The wavelength is defined by λ = v/f , and the number of wavelengths in a
square domain of size H equals H/λ. The 2D square computational domain is often
normalized into [0, 1] × [0, 1] for the convenience of analysis. Then, the dimen-
sionless wavenumber is equal to 2πf H/v [8, 20]. In the remainder of the paper, the
wavenumber refers to a dimensionless wavenumber, which is also denoted by k.

Consider the network of grid points (xm, zn) = (x0 + m �x, z0 + n �z) for
m, n = 0, 1, 2, . . .. Moreover, let pm,n = p|x=xm,z=zn

and km,n = k|x=xm,z=zn

represent the pressure of the wavefield and the wavenumber at the location (xm, zn),
respectively. Moreover, the discretizations of A(x, z), B(x, z) and C(x, z) at point
(m, n) are denoted by Am,n, Bm,n, and Cm,n, respectively. In addition, we have:

⎧⎪⎪⎨
⎪⎪⎩

A
m+ j

2 ,n+ l
2

= A
(
xm + j

2 �x, zn + l
2�z

)
,

B
m+ j

2 ,n+ l
2

= B
(
xm + j

2 �x, zn + l
2�z

)
,

Cm,n = C (xm, zn) ,

j, l ∈ {−3, −1, 0, 1, 3}. (5)

To construct an optimal finite difference scheme for the Helmholtz equation with

PML (1), we approximate ∂
∂x

(
A

∂p
∂x

)
and ∂

∂z

(
B

∂p
∂z

)
in different ways. There are

two general ways for doing this, derivative-weighting schemes and point-weighting
schemes. In [8], Cheng et al. discussed the main differences between a derivative-
weighting scheme and a point-weighting scheme. The first difference lies in their
constructions, that is, the way for discretizing the Laplacian operator with PML
∂
∂x

(
A

∂p
∂x

)
+ ∂

∂z

(
B

∂p
∂z

)
[6], while the second and also more important difference lies

in their capability of reducing numerical dispersion [6]. For more details about the
derivative-weighting scheme, please refer to [6, 8].

In this article, we first construct our 13-point finite difference scheme based on
point-weighting. For this end, we need to first approximate the first two terms of the
left-hand side of (1) with fourth-order accuracy. It follows from (1) that:

∂

∂x

(
A

∂p

∂x

)∣∣∣∣
x=xm, z=zn

= α1

(
A

∂p

∂x

)∣∣∣∣
x=xm− 3�x

2 , z=zn

+ α2

(
A

∂p

∂x

)∣∣∣∣
x=xm− �x

2 , z=zn

+ α3

(
A

∂p

∂x

)∣∣∣∣
x=xm+ �x

2 , z=zn

+ α4

(
A

∂p

∂x

)∣∣∣∣
x=xm− 3�x

2 , z=zn

, (6)

∂

∂z

(
B

∂p

∂z

)∣∣∣∣
x=xm, z=zn

= β1

(
B

∂p

∂x

)∣∣∣∣
x=xm, z=zn− 3�z

2

+ β2

(
B

∂p

∂x

)∣∣∣∣
x=xm, z=zn− �z

2

+ β3

(
B

∂p

∂x

)∣∣∣∣
x=xm, z=zn+ �z

2

+ β4

(
B

∂p

∂x

)∣∣∣∣
x=xm, z=zn− 3�z

2

. (7)
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Here, the coefficients αi and βi , i = 1, . . . , 4 need to be determined in a way

that (6) and (7) can approximate ∂
∂x

(
A

∂p
∂x

)∣∣∣
x=xm, z=zn

and ∂
∂z

(
B

∂p
∂z

)∣∣∣
x=xm, z=zn

with 4th-order accuracy. Applying the Taylor theorem on the right-hand sides
of (6) and (7), and then solving the generated linear systems for αi and βi , we
have:

⎧⎪⎨
⎪⎩

α1 = 1
24 �x

, α2 = − 9
8 �x

, α3 = 9

8 �x
, and α4 = − 1

24 �x
,

β1 = 1
24 �z

, β2 = − 9
8 �z

, β3 = 9
8 �z

, and β4 = − 1
24 �z

.

Next, we need to approximate ∂p
∂x

and ∂p
∂z

at points(
xm − 3

2�x, zn

)
, . . . ,

(
xm, zn + 3

2�z
)

with fourth-order accuracy, which can be

done in various ways. For example, we can let:

∂p

∂x

∣∣∣∣
x=xm− 3h

2 , z=zn

= w1pm−2,n + w2pm−1,n + w3pm,n + w4pm+1,n

+w5pm+2,n (8)

with

w1 = − 11

12 �x
, w2 = 17

24 �x
, w3 = 3

8 �x
, w4 = − 5

24 �x
and w5 = 1

24 �x
. (9)

Therefore, the first two terms of the left-hand side of (1) can be approximated as
follows:

L (1)
x pm,n = 1

�x2

[
−9

8
A

m− 1
2 ,n

(
1

24
pm−2,n − 9

8
pm−1,n + 9

8
pm,n − 1

24
pm+1,n

)

+ 1

24
A

m− 3
2 ,n

(
−11

12
pm−2,n + 17

24
pm−1,n + 3

8
pm,n

− 5

24
pm+1,n + 1

24
pm+2,n

)

− 1

24
A

m+ 3
2 ,n

(
− 1

24
pm−2,n + 5

24
pm−1,n − 3

8
pm,n

−17

24
pm+1,n + 11

12
pm+2,n

)

+ 9

8
A

m+ 1
2 ,n

(
1

24
pm−1,n − 9

8
pm,n + 9

8
pm+1,n − 1

24
pm+2,n

)]
, (10)
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L (1)
z pm,n = 1

�z2

[
−9

8
B

m,n− 1
2

(
1

24
pm,n−2 − 9

8
pm,n−1 + 9

8
pm,n − 1

24
pm,n+1

)

+ 1

24
B

m,n− 3
2

(
−11

12
pm,n−2 + 17

24
pm,n−1 + 3

8
pm,n

− 5

24
pm,n+1 + 1

24
pm,n+2

)

− 1

24
B

m,n+ 3
2

(
− 1

24
pm,n−2 + 5

24
pm,n−1 − 3

8
pm,n

−17

24
pm,n+1 + 11

12
pm,n+2

)

+ 9

8
B

m,n+ 1
2

(
1

24
pm,n−1 − 9

8
pm,n + 9

8
pm,n+1 − 1

24
pm,n+2

)]
. (11)

Moreover, the first two terms of the left-hand side of (1) can be also approximated
with second-order accuracy as follows:

L (2)
x pm,n = 1

�x2

[
A

m+ 1
2 ,n

pm+1,n −
(
A

m+ 1
2 ,n

+A
m− 1

2

)
pm,n + A

m− 1
2 ,n

pm−1,n

]
,

(12)

L (2)
z pm,n = 1

�z2

[
B

m,n+ 1
2
pm,n+1 −

(
B

m,n+ 1
2
+B

m,n− 1
2

)
pm,n + B

m,n− 1
2
pm,n−1

]
.

(13)

Alternatively, we can approximate pm−1,n, pm,n, . . . , pm,n−1 and pm,n+1 using Tay-
lor’s theorem with second-order accuracy and then replace them with the new approx-
imations in (12) and (13). For example, it can be seen that

(
pm+1,n+1 + pm+1,n−1

)
/2

approximates pm+1,n with a second order of accuracy. It follows that:

L (3)
x pm,n = 1

2�x2

[
A

m+ 1
2 ,n

(
pm+1,n+1 + pm+1,n−1

) −
(
A

m+ 1
2 ,n

+ A
m− 1

2 ,n

)
× (

pm,n+1 + pm,n−1
) + A

m− 1
2 ,n

(
pm−1,n+1 + pm−1,n−1

)]
, (14)

L (3)
z pm,n = 1

2�z2

[
B

m,n+ 1
2

(
pm+1,n+1 + pm−1,n+1

) −
(
B

m,n+ 1
2

+ B
m,n− 1

2

)
× (

pm+1,n + pm−1,n

) + B
m,n− 1

2

(
pm+1,n−1 + pm−1,n−1

)]
. (15)

As a result, the first two terms of the left-hand side of (1) can be approximated as
follows:

∂

∂x

(
A

∂p

∂x

)
+ ∂

∂z

(
B

∂p

∂z

)
≈ L

(
pm,n

) =
3∑

j=1

bj

(
L

(j)
x pm,n + L

(j)
z pm,n

)
, (16)

where b1, b2, and b3 are parameters to be determined subject to the constraint∑3
j=1 bj = 1.
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Moreover, consider Qm,n = k2
m,nCm,npm,n, and let:

I (1)
(
Qm,n

) = Qm,n, (17)

I (2)
(
Qm,n

) = 1

3

(
Qm−1,n + Qm+1,n + Qm,n−1 + Qm,n+1

)
− 1

12

(
Qm−2,n + Qm+2,n + Qm,n−2 + Qm,n+2

)
, (18)

I (3)
(
Qm,n

) = 1

4

(
Qm−1,n + Qm+1,n + Qm,n+1 + Qm,n−1

)
, (19)

I (4)
(
Qm,n

) = 1

4

(
Qm−1,n−1 + Qm+1,n+1 + Qm−1,n+1 + Qm+1,n−1

)
. (20)

Therefore,

I
(
k2
m,nCm,npm,n

)
=

4∑
j=1

cj I (j)
(
k2
m,nCm,npm,n

)
, (21)

where cj are parameters satisfying
∑4

j=1 cj = 1.
As a result, an optimal 13-point FDM for the Helmholtz-PML (1) can be obtained

as follows:

L
(
pm,n

) + I
(
k2
m,nCm,npm,n

)
= g̃m,n. (22)

Moreover, let

L (1) = L (1)
x pm,n + L (1)

z pm,n, (23)

L (2) = L (2)
x pm,n + L (2)

z pm,n. (24)

We refer:

L (1)
(
pm,n

) + k2
m,nCm,npm,n = g̃m,n, (25)

L (2)
(
pm,n

) + k2
m,nCm,npm,n = g̃m,n (26)

as the non-compact fourth-order (NC fourth-order) and conventional 5p schemes,
respectively. These two schemes will be included for comparison in our final analysis
in Section 4.
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Definition 1 Let (xm, zn) = (x0 + m�x, z0 + n�z) for m, n = 0, 1, 2, . . ., and
suppose that the partial differential equation under consideration is (� + k2)p = g,
and the corresponding finite difference approximation is L Pm,n = Gm,n where
Gm,n = g(xn, yn). The finite difference scheme L Pm,n = Gm,n is pointwise consis-
tent with the partial differential equation (� + k2)p = g at (x, z), if for any smooth
function φ(x, z):

∥∥∥∥((� + k2)ϕ − g
)∣∣∣

x=xm, z=zn

− [
L ϕ(xm, zn) − Gm,n

]∥∥∥∥ → 0 (27)

as �x, �z → 0.

In many practical applications, different step sizes �x and �z for variables x

and z, respectively, are used. For simplicity, we set γ = �z/�x, and let �x = h,
�z = γ h and η = 1 + 1/γ 2.

Proposition 1 If
∑2

j=1 bj = 1 and
∑4

j=1 cj = 1, then the finite difference
approximation (22) is pointwise consistent with the Helmholtz-PML (1) and is
second-order.

Proof Let (x, z) ∈ [xm, xm+1) × [zn, zn+1). It follows from Taylor’s theorem
that:

L (p) = ∂

∂x

(
A

∂p

∂x

)
+ ∂

∂z

(
B

∂p

∂z

)
+ ζ1 h2 + ζ2 h4 + O(h6), (28)

I
(
k2Cp

)
= k2Cp + ζ3h

2 + ζ4h
4 + O

(
h6

)
, (29)

where ζ1, ζ2, ζ3, and ζ4 are given as follows:

ζ1 = 1

24

[
(b2 + b3)

(
2A

∂4

∂x4
p + 2Bγ 2 ∂4

∂z4
p + 4

∂3

∂x3
p

∂

∂x
A + 3

∂2

∂x2
p

∂2

∂x2
A

+3γ 2 ∂2

∂z2
p

∂2

∂z2
B + ∂

∂x
p

∂3

∂x3
A + γ 2 ∂

∂z
p

∂3

∂z3
B + 4γ 2 ∂

∂z
B

∂3

∂z3
p

)

+12b3

((
Aγ 2 + B

) ∂2

∂z2

∂2

∂x2
p + ∂

∂z
B

∂

∂z

∂2

∂x2
p + γ 2 ∂

∂x
A

∂2

∂z2

∂

∂x
p

)]
,

(30)
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ζ2 = − 1

5760

[
30 (9b1 − 2b2 − 2b3)

(
∂2

∂x2
A

∂4

∂x4
p + γ 4 ∂2

∂z2
B

∂4

∂z4
p

)

+3 (9b1 − b2 − b3)

(
∂5

∂x5
A

∂

∂x
p + γ 4 ∂5

∂z5
B

∂

∂z
p

+5

(
∂4

∂x4
A

∂2

∂x2
p + γ 4 ∂4

∂z4
B

∂2

∂z2
p

))

+16 (4b1 − b2 − b3)

(
A

∂6

∂x6
p + Bγ 4 ∂6

∂z6
p

+3

(
∂

∂x
A

∂5

∂x5
p + γ 4 ∂

∂z
B

∂5

∂z5
p

))

+10 (27b1 − 4b2 − 4b3)

(
∂3

∂x3
A

∂3

∂x3
p + γ 4 ∂3

∂z3
B

∂3

∂z3
p

)

−120b3

(
3γ 2

(
∂2

∂x2
A + ∂2

∂z2
B

)
∂2

∂z2

∂2

∂x2
p

+γ 2
(

∂3

∂z3
B

∂

∂z

∂2

∂x2
p + ∂3

∂x3
A

∂2

∂z2

∂

∂x
p

)

+
(

4γ 2 ∂2

∂z2

∂3

∂x3
p + 2γ 4 ∂4

∂z4

∂

∂x
p

)
∂

∂x
A

+
(

2
∂

∂z

∂4

∂x4
p + 4γ 2 ∂3

∂z3

∂2

∂x2
p

)
∂

∂z
B

+2
(
Ag2 + B

)( ∂2

∂z2

∂4

∂x4
p + γ 2 ∂4

∂z4

∂2

∂x2
p

))]
, (31)

ζ3 = 1

4
(c3 + 2 c4)

(
∂2

∂x2
+ γ 2 ∂2

∂z2

)(
k2 C p

)
, (32)

ζ4 = − 1

48

(
(4 c2 − c3 − 2 c4)

(
∂4

∂x4
+ γ 4 ∂4

∂x4

)
− 12 γ 2 c4

∂4

∂z2∂x2

)(
k2 C p

)
.

(33)
Then, the left-hand side of (22) is equivalent to:

L (p) + I
(
k2Cp

)
= ∂

∂x

(
A

∂p

∂x

)
+ ∂

∂z

(
B

∂p

∂z

)
+ Ck2p

+ (ζ1 + ζ3) h2 + (ζ2 + ζ4) h4 + O
(
h6

)
. (34)

The results of this proposition can be concluded from (34) and (1).

What can be seen from the above proposition is that the finite difference approx-
imation (11) is second-order for arbitrary constants bi and cj under the conditions∑3

i=1 bi = 1 and
∑4

h=1 cj = 1. However, if b2, b3, c3, and c4 are chosen from val-
ues close to 0, then the finite difference approximation (11) can reach fourth-order.

1118 Numerical Algorithms (2021) 86:1109–1141



This means the order of accuracy of finite difference approximation (11) can vary
between two and four.

3 Numerical dispersion analysis and parameter selection strategy

In this section, a numerical dispersion analysis for the new difference scheme (22) is
presented. To do dispersion analysis, consider a homogeneous model with constant
velocity v. Let P(x, z) = exp (−i k(x cos θ + z sin θ)), where θ is the propagation
angle from the z-axis, and the wavenumber k = 2πf/v is a positive constant.

In the interior area, A = B = C = 1; thus, replacing pm+i,n+j with Pm+i,n+j

(i, j ∈ Z3) in the formula (11) gives:

T̂1Pm,n−2 + T̂2Pm−1,n−1 + T̂3Pm,n−1 + T̂2Pm+1,n−1 + T̂4Pm−2,n + T̂5Pm−1,n

+T̂6Pm,n + T̂5Pm+1,n + T̂4Pm+2,n + T̂2Pm−1,n+1 + T̂3Pm,n+1 + T̂2Pm+1,n+1

+T̂1Pm,n+2 = 0, (35)

where⎧⎪⎨
⎪⎩

T̂1 = (1−η)b1
12h2 − c2

12k2, T̂2 = (1−b1−b2)η

2h2 + c4
4 k2,

T̂3 = (4η−1)b1+3(b2η−1)

3h2 + 4c2+3c3
12 k2, T̂4 = − b1

12h2 − c2
12k2,

T̂5 = (3η+1)b1+3(b2η−η+1)

3h2 + 4c2+3c3
12 k2, T̂6 = − (5b1+4b2)η

2h2 + (1−c2−c3−c4) k2.

Let λ = 2πv/ω and G = λ/h denote the wavelength and the number of grid
points per wavelength, respectively. Moreover, let:{

P = cos(kx�x) = cos(kh cos θ) = cos ((2π/G) cos θ) ,

Q = cos(kz�z) = cos (γ kh sin θ) = cos ((2γπ/G) sin θ) .
(36)

It follows from substituting Pm,n = exp (−ik(x cos θ + z sin θ)) into (35), and
simplifying that:(

4Q2 − 2
)

T̂1 + 4PQT̂2 + 2QT̂3 +
(

4P 2 − 2
)

T̂4 + 2P T̂5 + T̂6 = 0. (37)

Furthermore, let kN represent the numerical wavenumber. It follows from replac-
ing the variable k in the parameters T̂1, T̂2, . . . , T̂6 with kN in (37) that:

kN = 1

h

√
N

D
, (38)

where

N = −2
(
P 2 + (η − 1)Q2 + 2(Q − P) + η (6P (Q − 1) − 8Q + 7)

)
b1

−12η (P − 1) (Q − 1) b2 + 12 ((ηP − 1) Q + (1 − η) P ) , (39)

D = 2
(
P 2 + Q2 − 2 (P + Q − 1)

)
c2 − 3 (P + Q − 2) c3 − 6 (PQ − 1) c4 − 6.

(40)
The next proposition presents the error between the numerical wavenumber kN

and the exact wavenumber k for the finite difference scheme (22).
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Moreover, Bayliss et al. [2] demonstrated that in practical applications, the mesh
size and the wavenumber are correlated with the accuracy of the desired computation.
They showed that the number of points per wavelength is not sufficient to determine
the accuracy of a given discretization. In the next proposition, the importance of the
pollution effect in numerical computations is highlighted.

Proposition 2 For the finite difference scheme (22), there holds:

(kN)2 = k2
(

1 + O
(
k2 h2

))
, k h → 0. (41)

Proof Let τ = kh, P(τ) = cos(τ cos θ) and Q(τ) = cos(γ τ sin θ). Then, the (38)
can be written as:

(kN)2 = 1

h2

N(τ)

D(τ)
, (42)

where

N(τ) = 2
(
γ 2

(
P 2(τ ) − 8 P(τ) + 7

)
+ Q2(τ ) − 8 Q(τ) + 7

)
b1

−12
(
γ 2 (P (τ) − 1) Q(τ) + P(τ) (Q(τ) − 1)

)
b3

−12
(
γ 2 (P (τ) − 1) + Q(τ) − 1

)
b2,

D(τ) = γ 2 (6 c1 − 2 (P (τ) (P (τ) − 2) + Q(τ) (Q(τ) − 2) − 1) c2

+3 (P (τ) + Q(τ)) c3 + 6 P(τ)Q(τ) c4) .

Applying Taylor theorem on N(τ) and 1
D(τ)

at the point τ = 0, we have:

N(τ) = 6γ 2τ 2 − γ 2τ 4

2

[
b2 + b3 − 2

(
b2 −

(
3γ 2 + 2

)
b3

)
sin2 (θ)

+
(
γ 2 + 1

)
(b2 − 5b3) sin4 (θ)

]
−γ 2τ 6

60
[4b1 − b2 − b3 − 3 (4 b1 − b2

+b3

(
5γ 2 + 4

))
sin2 (θ) +

(
12b1 − 3b2 + 3b3

(
−5γ 4 + 5γ 2 + 9

))
× sin4 (θ) +

(
γ 4 − 1

)
(4b1 − b2 + 14b3) sin6 (θ)

]
+ O(τ 8), (43)

1

D(τ)
= 1

6γ 2
+ τ 2

24γ 2 (c3 + 2c4)
((

γ 2 − 1
)

sin (θ)2 + 1
)

+ τ 4

288γ 2

[
γ 4 sin4 (θ) (4c2 + c3 (3c3 + 12c4 − 1) + 2c4 (6c4 − 1))

+6γ 2 cos2 (θ) sin2 (θ)
(

2c4 (2c3 + 2c4 − 1) + c3
2
)

+ cos4 (θ) (4c2 + 2c4 (6c3 + 6c4−1) + c3 (3c3−1))
]

+ O(τ 6). (44)
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It follows from (42), (43), and (44) that:

(kN)2 = k2
(

1 − k2h2

12 χ1 − k4h4

720 χ2 + O
(
k6h6

))
, kh → 0. (45)

with

χ1 = b2 + b3 − 3c3 − 6c4 +
(
γ 2 + 1

)
(b2 − 5b3) sin4 (θ)

+
(
−2b2 +

(
6γ 2+4

)
b3 + 3

(
1−γ 2

)
c3+6

(
1−γ 2

)
c4

)
sin2 (θ) , (46)

χ2 = 30 ((5 b1 + 6 b2 − 5) c4 + 15 (5 b1 + 6 b2 − 5) c3 − 10 (2 b1 + 3 b2) + 28)

× sin6 (θ) v +
(
−15b1

(
6γ 4 − 7γ 2 − 9

)
(c3 + 2c4) − 30b2

(
γ 2 − 2

)
×

(
γ 2 + 1

)
(3c3 + 6c4 − 1) v + 15γ 2

(
γ 2 − 1

)
(2b1 + 7c3 − 2)

−6
(

5(b1 + 4c3) − 10c2

(
γ 4 − 1

)
− 5c4

(
7γ 4 − 13γ 2 − 8

)
− 9

)
−45

(
γ 4 − 2γ 2 + 1

)
(c3 + 2c4) (c3 + 2c4)

)
sin4 (θ)

+
(

3 (40c2 + 5c3) − 15b1 (c3 + 2c4)
(

7γ 2 + 3
)

− 30b2

(
γ 2 + 1

)
× (3c3 + 6c4 − 1) − 90(c3 + 2c4)

2
(
γ 2 − 1

)
+15 (2b1 + 7c3 + 26c4 − 2) γ 2 + 3 (10c4 − 8)

)
sin2 (θ)

−30c4 (b1 + 6c3 − 2) − 15c3 (c1 − 2) − 45
(
c3

2 + 4c4
2
)

+10 (b1 − 6c2) − 2. (47)

The above proposition indicates that kN approximates k with second-order accu-
racy for arbitrary constants bi and cj under the conditions

∑3
i=1 bi = 1 and∑4

j=1 cj = 1. Moreover, the term associated with k4 h4 presents the pollution effect,
which depends on the wavenumber k, the parameters of the finite difference formula,
and the wave propagation angle θ from the z-axis. It also can be seen from Proposi-
tion (2) that kN can approximate k with fourth-order accuracy when b2, b3, c3, and
c4 amount to 0.

In the remainder of this section, we incorporate the refined choice strategy (rule
3.8 from [6]) and present an algorithm for parameter selection of the optimal 13-point
FDM (22) based on minimizing the numerical dispersion.

Given h = 2π
Gk

, the relationship of the numerical wavenumber kN and the exact
wavenumber k can be presented as follows:

kN

k
= G

2π

√
N

D
. (48)

Furthermore, from the physical point of view, the ratio kN/k amounts to the
normalized phase velocity (see [8, 22, 25, 28, 32] for more details). The normal-
ized phase velocity is a reliable tool for measuring the numerical dispersion. The
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normalized numerical phase velocity and the normalized numerical group velocity
can be found as follows, respectively [6, 22, 28, 32]:

V N
ph

v
= G

2π

√
N

D
, (49)

V N
gr

v
= v

V N
ph

⎡
⎣
(

1
h

∂N
∂k

)
D − N

(
1
h

∂D
∂k

)
D2

⎤
⎦ . (50)

It can be seen that there would be no numerical dispersion if the normalized
numerical phase velocity equals 1. Therefore, to minimize the error between kN and
k, one can estimate the parameters of the finite difference scheme (22) in a way that
the normalized numerical phase velocity can maintain its value close to 1.

Consider the following function:

J (b1, . . . , c4; G, θ) = G

2π

√
N

D
− 1, (51)

where b1 ∈ (0, 1], and b2, c2, c3, c4 ∈ R, and (G, θ) ∈ IG × Iθ with IG and Iθ are
two intervals. In general, one can choose Iθ = [

0, π
2

]
and IG = [Gmin, Gmax] ⊆

[2, 400]. We remark that the interval
[
0, π

2

]
can be replaced by

[
0, π

4

]
because of

the symmetry, and Gmin ≥ 2 based on the Nyquist sampling limit (see [28] for more
details).

Therefore, minimizing the error between kN and k is equivalent to minimizing the
norm ‖J (b1, . . . , c4; ., .)‖∞,IG×Iθ

. One way to estimate the optimal parameters is to
solve:

(b1, . . . , c4)=arg min
{‖b1, . . . , c4; G, θ)‖IG×Iθ : b1 ∈(0, 1], b2, c2, c3, c4 ∈R

}
(52)

using the least-squares method.
Therefore, it follows from J (b1, . . . , c4; G, θ) = 0 that:

G2

4π2

N

D
= 1, (53)

and

G2 ((P − Q) (P + Q − 2) + η (Q − 1) (6P + Q − 7)) b1 + 6ηG2 (Q − 1)

(P − 1) b2 + 4π2
(
P 2 + Q2 + 2 (1 − P − Q)

)
c2 − 6π2 (P + Q − 2) c3

−12π2 (PQ − 1) c4 = 6 (P (Q − 1) η + P − Q) G2 + 12π2. (54)

Let⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

θ =θm = (m − 1)

4(l − 1)
π ∈ Iθ =

[
0,

π

2

]
, m=1, 2, . . . , l,

1

G
= 1

Gn

= 1

Gmax
+ (n − 1)

1

Gmin
− 1

Gmax

r − 1
∈
[

1

Gmax
,

1

Gmin

]
, n=1, 2, . . . , r .
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Then, (54) leads to the following overdetermined linear system:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S1
1,1 S2

1,1 S3
1,1 S4

1,1 S5
1,1

...
...

...
...

...
S1

1,r S2
1,r S3

1,r S4
1,r S5

1,r
...

...
...

...
...

S1
m,n S2

m,n S3
m,n S4

m,n S5
m,n

...
...

...
...

...
S1

l,r S2
l,r S3

l,r S4
l,r S5

l,r

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

b1
b2
c2
c3
c4

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S6
1,1
...

S6
1,r
...

S6
m,n
...

S6
l,r

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (55)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

S1
m,n = G2

n

((
Pm,n − Qm,n

) (
Pm,n + Qm,n − 2

)
+η

(
Qm,n − 1

) (
6P + Qm,n − 7

))
,

S2
m,n = 6ηG2

n

(
Qm,n − 1

) (
Pm,n − 1

)
,

S3
m,n = 4π2

(
P 2

m,n + Q2
m,n + 2

(
1 − Pm,n − Qm,n

))
,

S4
m,n = −6π2

(
Pm,n + Qm,n − 2

)
,

S5
m,n = −12π2 (PQ − 1) ,

S6
m,n = 6

(
Pm,n

(
Qm,n − 1

)
η + Pm,n − Qm,n

)
G2

n + 12π2.

(56)

with

Pm,n = cos ((2 π/Gn) cos (θm)) , Qm,n = cos ((2 π γ/Gn) sin (θm)) . (57)

As it was mentioned before, the linear system (55) can be solved using the least-
squares method.

We next present refined and optimal algorithms for parameter selection and reduc-
ing the numerical dispersion and improving the accuracy of the 13-point finite
difference scheme (22). The optimal algorithm is based on the refined choice strat-
egy (rule 3.8 from [6]). According to the rule, first, the interval IG = [Gmin, Gmax]
is estimated by using a priori information. For example, for a given step size h, IG

can be considered as follows:

IG =
[

vmin

hfmax
,

vmax

hfmin

]
, (58)

where f ∈ [fmin, fmax] and v ∈ [vmin, vmax] are the frequency and the velocity,
respectively.

Then, the parameters of the finite difference scheme (22) are estimated such that

(b1, . . . , c4)=arg min
{‖J (b1,. . ., c4; G, θ)‖IG×Iθ : b1 ∈(0, 1], b2,. . ., c4 ∈ R

}
.

(59)

In the remainder of this article, we refer to the 13-point finite difference scheme
(22) whose parameters are estimated using the refined choice strategy as the refined
13-point finite difference scheme (refined 13p).

Moreover, according to Proposition (1) and Proposition (2), the order of accuracy
of the 13-point finite difference scheme can vary between second and fourth orders.
Especially, when b2, b3, c3, and c4 amount to 0. We also know that achieving a
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certain accuracy requires a minimum number of grid points per wavelength, G. This
number is usually smaller with high-order methods than with low-order methods
[36]. Therefore, we propose Algorithm 1 by which the method can obtain a higher
order of accuracy whenever Gmin is greater than a certain value, which is introduced
here by Gmid . Experimentally, we observed that Gmid can take a value greater than
10. Basically, we let all parameters associated with second-order schemes be equal
to 0. That is, b2 = b3 = c3 = c4 = 0. It follows from (53) and (55) that:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

W 1
1,1 W 2

1,1
...

...
W 1

1,r W 2
1,r

...
...

W 1
m,n W 2

m,n
...

...
W 1

l,r W 2
l,r

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
b1
c2

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

W 3
1,1
...

W 3
1,r
...

W 3
m,n
...

W 3
l,r

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (60)

where

⎧⎨
⎩

W 1
m,n = (P (8 − P) + Q(1 − η) (Q − 8) − 7η) G2

n,

W 2
m,n = 4 (P (2 − P) + Q(2 − Q) − 2) π2,

W 3
m,n = −12π2.

(61)

As a result, we propose the optimal 13-point finite difference scheme (optimal
13p), whose parameters are estimated using Algorithm 1.

From now on, for simplicity, we present all of our following results for the case
that �x = �z. Moreover, let refined 9p represent the optimal 9-point finite dif-
ference scheme [6] such that its parameters are estimated using the refined choice
strategy (rule 3.8 from [6]). In addition, optimal rotated 9p represents the rotated 9-
point FDM [6, 22] with parameters a = 0.5461, d = 0.3752, and e = −4 × 10−5.
This group of optimal parameters is provided by Jo, Shin, and Suh [6, 22] as optimal
parameters. Moreover, let point-weighting 9p represent the point-weighting scheme
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[8] whose parameters are estimated using the flexible strategy for selection of weights
(rule 3.3 at p. 2354 of [8]).

The normalized phase and group velocity curves of refined 13p, refined 9p, opti-
mal rotated 9p, and point-weighting 9p are presented in Figs. 1 and 2, respectively.
The optimal parameters are estimated on IG intervals [2, 2.5], [2.5, 3] [4, 5], [5, 6],
[6, 8], [8, 10], and [10, 400]. It can be seen that refined 13p has the least dispersion
among all schemes in the study.

Furthermore, since refined 13p and optimal 13p are basically the same schemes
(except when Gmin > Gmid ), we only presented normalized phase and group veloc-
ity curves for one of them, refined 13p. With Gmid = 10, the normalized phase and
group velocity curves of these two schemes will be identical. However, in terms of
computational costs, efficiency, and accuracy, optimal 13p has some advantages over
refined 13p. This will be discussed in Example 4.1.
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(a) refined 13p
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(d) point-weighting 9p

Fig. 1 Normalized phase velocity curves for various schemes
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Fig. 2 Normalized group velocity curves for various schemes

4 Numerical experiments

In this section, we present three numerical examples. Example 4.1 is meant for illus-
trating the accuracy and efficiency of the new schemes and comparing them with
some other optimal finite difference schemes that are widely used for solving the
Helmholtz equation with PML. To test the order of accuracy, in Example 4.1, Dirich-
let boundary conditions are imposed on the boundary. However, we would like to
emphasize that solving the Helmholtz equation with available boundary conditions is
not the main focus of this article. There are a large number of efficient and high-order
finite difference methods such as [4, 24, 29, 31, 33, 37, 38] that are compact meth-
ods. To our best knowledge, currently, there is no compact finite difference method
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compatible with the Helmholtz equation with PML. In Example 4.2, we analyze the
numerical solutions of the schemes, that we use in 4.1, and compare them with the
exact solution in a homogeneous model. Finally, in Example 4.3, a more realistic
problem is solved by the new schemes, refined 13p and optimal 13p.

In addition to those that have been introduced before, the new schemes, refined
13p and optimal 13p, are also compared against the refined 25p and the global 25p
from [10] that are the optimal 25-point schemes whose parameters are estimated
using the refined and global strategies, respectively.

4.1 Example 1

Consider:

�p + k2p = g(x, z), in � := (0, 1) × (0, 1), (62)

with

(kx, kz) = k0

(
e−k0(x+z) + 1

)
(cos(θ), sin(θ)) , (63)

g(x, z) = eik0(x cos(θ)+z sin(θ))
[
sin (πx) sin (πz)

(
k0

2e−2k0(x+z)
(

2ek0(x+z) + 1
)

−2π2
)
−2πik0 (cos (πx) sin (πz) cos (θ)+cos (πz) sin (πx) sin (θ))

]
.

(64)

Dirichlet boundary conditions are imposed on the boundary, and its analytical
solution is available:

p(x, z) = sin (πx) sin (πz) e−i(xkx+zkz). (65)

In this example, we compare refined 13p and optimal 13p with a number of pop-
ular optimal finite difference schemes that are used for the Helmholtz equation with
PML. The new schemes, refined 13p and optimal 13p, are compared against refined
25p [10], the global 25p [10], refined 9p [6], optimal rotated 9p [6, 22], point-
weighting 9p [8], non-compact fourth-order (NC 4th-order) (25), and conventional

5p (26). Moreover, the interval IG = [Gmin, Gmax] =
[

2π
hkmax

, 2π
hkmin

]
is estimated by

using a priori information.
All the experiments in this example are performed with MATLAB 9.5.0.1067069

(R2018b) Update 4 on a Dell laptop equipped with Windows 10 Home Edition (64-
bit), Intel(R) Core(TM) i5-4210U CPU, and 8.00 GB physical memory (RAM). We
used an unsymmetric-pattern multifrontal (UMF) method for sparse LU factorization
[11, 12] for solving linear systems generated by each FDM.

Additionally, the error between the numerical solution and the exact solution is
measured in C-norm [6], which is defined for any M × N complex matrix Z as:

‖Z‖C = max
1≤i≤M, 1≤j≤N

|zi,j |. (66)

where |zi,j | is the complex modulus of zi,j .
In Table 1, we demonstrate the C-norm for different schemes for different grid-

points N per line when θ = π/4, k0 = 10, and Gmid = 10. As can be seen, both
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Table 1 The error in the C-norm for k0 = 10

N 41 81 161

Refined 13p 9.3344e−03 3.0742e−03 2.5983e−03

Optimal 13p 2.4503e−05 2.8669e−06 7.1886e−07

Refined 25p [10] 7.3191e−05 4.0650e−06 3.7812e−07

Global 25p [10] 9.8230e−05 6.6231e−06 8.8407e−07

NC 4th-order (25) 2.3078e−04 3.2921e−05 8.9589e−06

Refined 9p [6] 9.8639e−03 2.4627e−03 6.1646e−04

Conventional 5p (26) 7.3125e−02 2.1160e−02 5.5046e−03

Optimal rotated 9p [6, 22] 1.1260e−02 2.8265e−03 7.0816e−04

Point-weighting 9p [8] 9.8639e−03 2.4627e−03 6.1646e−04

N 321 641 1281

Refined 13p 2.7940e−04 3.6236e−05 8.5970e−06

Optimal 13p 6.0049e−08 3.5808e−09 7.9634e−10

Refined 25p [10] 2.1754e−08 1.0023e−08 7.9202e−10

Global 25p [10] 9.2679e−08 3.2737e−09 1.9928e−10

NC 4th-order (25) 6.1128e−07 1.7979e−08 1.0581e−09

Refined 9p [6] 1.5411e−04 3.8528e−05 9.6322e−06

Conventional 5p (26) 1.3907e−03 3.4858e−04 8.7200e−05

Optimal rotated 9p [6, 22] 1.7707e−04 4.4270e−05 1.1068e−05

Point-weighting 9p [8] 1.5411e−04 3.8528e−05 9.6321e−06

non-optimal methods, NC 4th-order and conventional 5p, perform well. However,
based on our numerical experiments, as k0 increases, the accuracy of the non-optimal
methods decreases.

Table 2 shows the error in the C-norm for different schemes for different grid
points N per line when θ = π/4 and k0 = 75. It can be seen that optimal 13p
schemes provide the best accuracy among all methods when k0 = 75 and Gmid = 10.
This table also shows that refined 13p is second-order, while the order of accuracy
of optimal 13p is better than the second-order. In addition, for smaller N , 13-point
schemes have shown a better level of accuracy than the other schemes. While the
accuracy of refined 13p is comparable with 9-point schemes for large values of N , the
optimal 13p provides a notable level of accuracy, even better than NC 4th-order. In
addition, the refined and global 25p schemes as expected have the best performance
among all schemes. However, for large values of N , the C-norm of optimal 13p is
quite comparable with those of the 25-point schemes.

Moreover, in Table 3, we increased k0 to k0 = 100 and set Gmid = 16. What
stands out from this table is that both refined 13p and optimal 13p have demonstrated
the best accuracy among all schemes under study. Again, optimal 13p can take advan-
tage of large values of N , as its accuracy is better than NC 4th-order even though
the associated matrix with optimal 13p and NC 4th-order have similar structures (see
Fig. 3). Again, the fourth-order 25-point schemes as expected outperform the reset of
schemes under study in terms of having smaller C-norm.
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Table 2 The error in the C-norm for k0 = 75

N 41 81 161

Refined 13p 4.7948e−01 8.4428e−02 1.7127e−02

Optimal 13p 4.7948e−01 8.4428e−02 1.7127e−02

Refined 25p [10] 3.2695e−02 4.5151e−03 2.4812e−04

Global 25p [10] 3.8055e−01 2.7117e−02 2.1780e−03

NC 4th-order (25) 1.6949e+00 2.6088e−01 9.9464e−03

Refined 9p [6] 5.1165e−01 9.7380e−02 2.2318e-02

Conventional 5p (26) 9.5996e+00 3.2143e+00 1.6601e+00

Optimal rotated 9p [6, 22] 6.3398e−01 3.1629e−01 8.0844e−02

Point-weighting 9p [8] 5.1165e−01 9.7380e−02 2.2318e−02

N 321 641 1281

Refined 13p 5.3125e−03 1.7139e−03 4.8247e−04

Optimal 13p 3.5799e−04 2.2696e−05 1.5766e−06

Refined 25p [10] 2.0716e−05 9.9044e−07 6.4142e−08

Global 25p [10] 1.1650e−04 7.8467e−06 5.8990e−07

NC 4th-order (25) 4.8396e−04 3.1317e−05 2.3352e−06

Refined 9p [6] 5.3031e−03 1.2950e−03 3.2106e−04

Conventional 5p (26) 1.9918e−01 4.6184e−02 1.1442e−02

Optimal rotated 9p [6, 22] 2.0072e−02 5.0364e−03 1.2585e−03

Point-weighting 9p [8] 5.3031e−03 1.2950e−03 3.2106e−04

Table 3 The error in the C-norm for k0 = 100

N 41 81 161

Refined 13p 8.0860e−01 1.5112e−01 2.9006e−02

Optimal 13p 8.0860e−01 1.5112e−01 2.9006e−02

Refined 25p [10] 3.8692e−01 1.0178e−02 7.0577e−04

Global 25p [10] 1.3662e+00 3.5404e−02 8.5880e−03

NC 4th-order (25) 8.8833e+01 2.5897e+00 3.0612e−02

Refined 9p [6] 2.9291e+00 9.0141e−01 2.8377e−01

Conventional 5p (26) 5.7217e+00 1.2101e+01 5.1107e+00

Optimal rotated 9p [6, 22] 1.5824e+00 1.9596e+00 6.0908e−01

Point-weighting 9p [8] 2.9291e+00 9.0141e−01 2.8377e−01

N 321 641 1281

Refined 13p 9.8585e−03 3.0541e−03 1.2024e−03

Optimal 13p 9.8585e−03 1.9835e−04 5.3343e−05

Refined 25p [10] 8.7337e−05 3.7472e−06 6.0353e−07

Global 25p [10] 8.0437e−04 6.6983e−05 1.9299e−05

NC 4th-order (25) 3.4756e−03 2.6391e−04 7.4180e−05

Refined 9p [6] 6.5930e−02 1.3619e−02 3.0793e−03

Conventional 5p (26) 4.0883e+00 4.9499e−01 2.8923e−01

Optimal rotated 9p [6, 22] 4.1182e−01 1.7273e−01 5.1743e−02

Point-weighting 9p [8] 6.5930e−02 1.3619e−02 3.0793e−03
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Fig. 3 The matrix in the linear systems with N = 10

Furthermore, the order of accuracy of the new schemes depends on the parameters
of the finite difference scheme (22). In general, optimal finite difference schemes are
arithmetic-weighted arithmetic averages of several schemes. In particular, the new
13-point schemes are weighted arithmetic averages of second-order and fourth-order
schemes, L1, L2, and L3. For example, for a given h, the fourth-order scheme L1,
from (25), can contribute to this average with weight of b1. However, when the size
of increment h is decreased to h/2, L1 can contribute to the average with a different
b1. Therefore, the value of N can affect the order of accuracy of the method.

In addition, Tables 4 and 5 show the error in the C-norm with k0 = 100, Gmid =
10 and θ = 0, π/16,. . . ,π/4, for N = 101 and N = 201, respectively. Overall, refined
13p and optimal 13p provide the most accurate results among all schemes in this
study. When N = 101 (Gmin < Gmid ), the errors in the C-norm for refined 13p and
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Table 4 The error in the C-norm for k0 = 100 and N = 101

θ 0 π/16 π/8 3 π/16 π/4

Refined 13p 7.5222e−02 8.9361e−02 8.7764e−02 7.8789e−02 8.3067e−02

Optimal 13p 7.5222e−02 8.9361e−02 8.7764e−02 7.8789e−02 8.3067e−02

Refined 25p 1.0537e−02 1.4637e−02 9.1759e−03 7.2469e−03 3.3765e−02

Global 25p 9.7047e−02 3.6421e−02 1.9046e−02 1.5790e−02 3.3981e−01

NC 4th-order 3.9183e−01 7.2159e−01 5.1360e−01 2.4293e−01 5.7859e−01

Refined 9p 9.4140e−02 1.2232e−01 9.7428e−02 1.1577e−01 6.5001e−01

Conventional 5p 2.8297e+00 3.9821e+00 3.6443e+00 4.4336e+00 4.7288e+01

Optimal rotated 9p 2.4409e−01 1.9197e+00 1.8917e−01 4.5804e−01 4.8616e+00

Point-weighting 9p 9.4140e−02 1.2232e−01 9.7428e−02 1.1577e−01 6.5001e−01

optimal 13p are identical. However, when N = 201, (Gmin ≥ Gmid ), the optimal
13p provides a more accurate result.

However, all finite difference schemes require solving a linear system AX = R,
where A is the matrix of coefficients associated with each finite difference scheme,
X is a vector consisting of the unknowns, and R is the right-hand side. The matrix
in the linear system associated with each finite difference scheme, matrix A, is a
sparse matrix with complex values (see Fig. 3). Matrix A associated with the opti-
mal 9-point schemes (refined 9p, optimal rotated 9p, and point weighting 9p) has the
same number of non-zero entries. For a given N , the numbers of non-zero entries of
the matrix A (NNE) for refined 13p, optimal 13p (Gmin ≥ Gmid , point-weighting
9p, and refined 25p are 13 N2 − 20 N + 4, 9 N2 − 12 N , 9 N2 − 18 N + 10 and
25 N2 − 60 N + 36, respectively). For example, when N = 10, NNE for refined
13p, optimal 13p (Gmin ≥ Gmid ), point-weighting 9p, and refined 25p are 1104,
780, 784, and 1936, respectively. Therefore, using LU decomposition, theoretically
speaking, the computational complexity of the optimal 9-point schemes is compa-
rable when (Gmin ≥ Gmid ) while the computational complexity of refined 13p is

Table 5 The error in the C-norm for k0 = 100 and N = 201

θ 0 π/16 π/8 3 π/16 π/4

Refined 13p 1.9633e−02 2.5184e−02 1.9384e−02 2.1496e−02 1.8735e−02

Optimal 13p 1.9633e−02 2.5184e−02 1.9384e−02 2.1496e−02 1.8735e−02

Refined 25p 7.3531e−04 8.4408e−04 5.2335e−04 4.4990e−04 3.0142e−04

Global 25p 3.0820e−03 8.4830e−03 2.3530e−03 1.7268e−03 2.5818e−03

NC 4th-order 2.2008e−02 6.9477e−02 3.2024e−02 1.8711e−02 1.2017e−02

Refined 9p 2.1567e−02 2.4293e−02 2.2840e−02 2.7603e−02 1.8795e−01

Conventional 5p 1.4974e+00 1.2433e+00 1.3061e+00 2.6444e+00 1.4253e+00

Optimal rotated 9p 1.1361e−01 4.3817e−01 7.2447e−02 6.4544e−02 5.5283e−01

Point-weighting 9p 2.1567e−02 2.4293e−02 2.2840e−02 2.7603e−02 1.8795e−01
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slightly higher than the other schemes under study in this example. Moreover, a 25-
point scheme (such as refined 25p) also has more computational complexity than
the13-point schemes. Especially, when (Gmin ≥ Gmid ), computational costs using a
25-point scheme can be quite high. In practice, on average, we could not find a sig-
nificant difference between the CPU time of 9-point schemes and 13-point schemes
with the same number of grid points, N , on our machine using the UMF method for
sparse LU factorization.

4.2 Problem 2: a homogeneousmodel

In this example, a homogeneous velocity model is considered. The velocity of the
medium is 2000 m/s, and horizontal and vertical samplings are nx = nz = 51 with
sampling intervals h = �x = �z = 20 m, and the time sampling is �t = 8 ms. A
point source δ(x −xs, z− zs)R(ω, fM) is located at the point (700 m, 500 m), where
R(ω, fM) is the Ricker wavelet, defined in (67), with the peak frequency fM =
15 Hz.

R(t, fM) =
(

1 − 2π2f 2
Mt2

)
/ exp

(
π2f 2

Mt2
)

. (67)

Fig. 4 Source and receiver locations
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For this homogeneous model, the analytical solution is available as follows [1]:

p(x, z, t) = iπF−1
(
H

(2)
0

(ω

v

√
(x − xs)2 + (z − zs)2

)
F (R(t, fM))

)
(68)

where F and F−1 are Fourier and inverse Fourier transformations with respect to
time, respectively, and H

(2)
0 is the second Hankel function of order zero.

Due to the fact that the numerical dispersion is dependent on the propaga-
tion angle, we have placed receivers 1,2,. . . ,7 separately at (100 m, 500 m),
(300 m, 300 m), (700, 700 m), (100 m, 700 m), (900 m, 500 m), (700 m, 300 m),
and (300 m, 900 m), respectively (please see Fig. 4).

Here, we compare the refined 13p, optimal 13p (with Gmid = 16), NC 4th-order,
refined 9p, optimal rotated 9p, point-weighting 9p, refined 25p, and conventional 5p
in terms of accuracy. Table 6 highlights the error in the C-norm for receivers 1,. . . ,7.
It can be seen that refined 13p and optimal 13p provide the best accuracy among all
schemes. However, optimal 13p provides the best level of accuracy overall. In Figs. 5
and 6, the exact and numerical solutions obtained using refined 13p, optimal 13p
(with Gmid = 16), NC 4th-order, refined 9p, optimal rotated 9p, and point-weighting
9p are compared. It can be seen that the NC 4th-order is the least efficient scheme.

In this example, when Gmid ≥ 34, the errors in the C-norm using refined 13p and
optimal 13p are identical. Therefore, we ran all of the experiments in this example
using Gmid = 16 to differentiate the numerical results between these two schemes.
As can be seen, in this example, refined 13p is performing better than optimal 13p
in terms of accuracy. However, the main reason behind using optimal 13p is the

Table 6 The error in the C-norm (receivers 1, 2,. . . ,7)

(xr , zr ) (100, 500) (300, 300) (700, 700) (100, 700)

Refined 13p 4.9071e−02 5.0956e−02 4.7928e−02 4.5169e−02

Optimal 13p 4.9393e−02 5.1436e−02 4.8484e−02 4.5480e−02

Refined 25p 1.9892e−02 1.3034e−02 1.9484e−02 1.6327e−02

NC 4th-order 3.4299e−01 2.2120e−01 1.6034e−01 2.9828e−01

Refined 9p 5.3459e−02 5.8838e−02 5.3181e−02 5.1615e−02

Optimal rotated 9p 1.1694e−01 6.2835e−02 9.3922e−02 9.5977e−02

Point-weighting 9p 5.3459e−02 5.8838e−02 5.3181e−02 5.1615e−02

Conventional 5p 1.0620e+00 8.1231e−01 5.8804e−01 1.0586e+00

(xr , zr ) (900, 500) (700, 300) (300, 900)

Refined 13p 4.7460e−02 4.7921e−02 5.0916e−02

Optimal 13p 4.8012e−02 4.8477e−02 5.1311e−02

Refined 25p 1.9475e−02 1.9484e−02 1.0649e−02

NC 4th-order 1.6119e−01 1.6039e−01 1.4991e−01

Refined 9p 5.3168e−02 5.3184e−02 5.9944e−02

Optimal rotated 9p 9.4310e−02 9.3899e−02 8.3041e−02

Point-weighting 9p 5.3168e−02 5.3184e−02 5.9944e−02

Conventional 5p 5.9055e−01 5.8796e−01 7.1227e−01
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Fig. 5 Exact and numerical solutions for receivers 1, 2, 3, and 4

computational cost, as discussed in Example 4.1. Moreover, for a small grid, nx =
nz = 51, there is no significant computational difference among all of the schemes
under study (Fig. 7).

Furthermore, the approximated solutions by NC 4th-order and conventional 5p
emphasize the necessity of using an optimal method over other methods. Even though
the NC 4th-order is a fourth-order scheme, it cannot approximate the solution (68) at
all. The main reason responsible for this is the impact of the pollution effect.

Moreover, the approximation of the solution (68) requires computing and solv-
ing the Helmholtz equation with PML for a considerable number of times and then
applying inverse Fourier transform. Although the refined 25p provides the most accu-
rate solution among all schemes under study, it requires much higher computational
resources than the 13-point schemes.
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Fig. 6 Exact and numerical solutions for receivers 5, 6, and 7

Fig. 7 A layered model and the locations of the source and the receiver
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Fig. 8 The monofrequency wavefield (real part) for f = 62.5 Hz

1136 Numerical Algorithms (2021) 86:1109–1141



Fig. 9 Snapshots for t = 520 ms generated by various schemes
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Fig. 10 The numerical solution computed by various schemes
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4.3 Problem 3: a layeredmodel

In this example, we consider a layered P-wave velocity model, shown in Fig. 7a, to
test the new schemes in a more practical usage. Horizontal and vertical samplings are
nx = nz = 201 with sampling intervals �x = �z = 10 m, and the time sampling
is �t = 8 ms. A point source δ(x − xs, z − zs)R(ω, fM) is located at the point
(xs, zs) = (1000 m, 0 m), where R(ω, fM) is the Ricker wavelet with the peak
frequency fM = 20 Hz.

In addition, snapshots for t = 520 ms generated by refined 13p, optimal 13p, NC
4th-order , optimal rotated 9p, point-weighting 9p, and conventional 5p are available
in Fig. 9. No boundary reflections can be observed, and the upward incident waves,
the downward incident waves, and transmissive waves are all clear. It can be seen that
the snapshot generated by conventional 5p, shown in Fig. 9d, does not represent the
expected solution. The snapshot generated by NC 4th-order has more numerical arti-
facts than the remaining figures. In particular, close to the source area and above the
center, we can observe these numerical artifacts. We also observed some numerical
artifacts in Fig. 9e, generated by optimal rotated 9p, in the center area. Moreover, no
significant differences have been observed among the snapshots generated by refined
13p, optimal 13p, and point-weighting 9p.

We have also placed a receiver at (xr , zr ) = (500, 0) (Fig. 7b) and plotted the
corresponding numerical solution in Fig. 10. It can be seen that the numerical solution
computed by conventional 5p does not represent the expected result. The numerical
solution computed by NC 4th-order also has lots of non-physical oscillations. In the
reminding figures, we can see that the first arrival and reflections are all clear, and
non-physical oscillations in the synthetic seismogram are negligible.

We have already shown in Example 4.2 that the optimal and refined 13p provide
the most reliable results in comparison with other schemes in this study. Overall,
monofrequency wavefields, see Fig. 8, are the figures that come directly from solving
the Helmholtz equation with PML (1). The more accurate the solution of this equation
is estimated, the better results can be found in Figs. 9 and 10.

5 Conclusions

In this article, we proposed a 13-point finite difference method (FDM) based on the
point-weighting scheme derivation strategy. It was shown that the 13-point FDM is
consistent with the Helmholtz equation with PML, and its order of accuracy can vary
between two and four. We presented an error analysis for the numerical wavenumber
and recommended two strategies, the optimal and refined strategies, for parameter
selection of the 13-point FDM. The normalized phase and group velocity curves of
the 13-point FDM confirm that it is very effective in numerical dispersion reduction.
The new numerical schemes, the refined and optimal 13-point schemes, were com-
pared against a number of existing finite difference methods that are widely used
for the Helmholtz equation with PML. Our numerical examples demonstrate that the
new schemes are less dispersive than any other optimal 9-point schemes. Moreover,
it has been shown that the optimal 13-point has less computational complexity and
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provides better accuracy on refined grids than any other schemes under study. In the
future, we plan to extend the new schemes for solving the Helmholtz equation with
PML in three dimensions.
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