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Abstract In this article, a one-dimensional inverse heat conduction problem with
unknown nonlinear boundary conditions is studied. In many practical heat transfer
situations, the heat transfer coefficient depends on the boundary temperature and the
dependence has a complicated or unknown structure. For this reason highly nonlin-
ear boundary conditions are imposed involving both the flux and the temperature.
A numerical procedure based on the mollification method and the space marching
scheme is developed to solve numerically the proposed inverse problem. The stabil-
ity and convergence of numerical solutions are investigated and the numerical results
are presented and discussed for some test problems.

Keywords Inverse heat conduction · Nonlinear boundary condition ·
Mollification · Space marching method

1 Introduction

Most of the realistic descriptions of the heat transfer processes in different environ-
ments are characterized by a nonlinear relationship between the normal heat flux and
the temperature on the boundary. In other words, these problems are described by a
partial differential equation subjected to a nonlinear boundary condition [1, 2]. When
the temperature level becomes high, radiation and/or change of phase may occur and
as a result, the boundary conditions become nonlinear. For instance the problems
of heat diffusion with nonlinear boundary conditions appear in combustion systems,
where in the pre-ignition heating, the particle entering a furnace and traveling toward
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a flame front receives heat uniformly by thermal radiation from the furnace walls and
losses heat uniformly by convection to the surrounding gases [3, 4].

However, there are many practical heat transfer situations at high temperatures, or
in hostile environments, e.g. combustion chambers, cooling steel processes, etc. in
which either the actual method of heat transfer is not known, or it cannot be assumed
that the governing boundary conditions have such a simple form [5].

In recent years, with respect to the variety of application of partial differential
equation, an important mathematically challenging and well-investigated class of
problems are the identification of coefficients and unknown functions that appear
in partial differential equations. The identification of coefficients in heat equations
known as inverse heat conduction problems (IHCP’s) usually is an ill-posed problem
that has received considerable attention from many researchers in a variety of fields,
using different methods. Some detailed treatments of problems in these areas can be
found in [6-13]. However, the determination of unknown functions and parameters
in the boundary conditions is less developed.

It is well-known that the determination of nonlinear boundary conditions is an ill-
posed problem. In many problems, even if a unique solution exists, it will not depend
continuously on the input data. Therefore using the regularization methods seems
necessary in order to stabilize the solution. For such problems one may find many
studies in literature. For instance in [7], Cannon and Zachman used the Green’s func-
tion method to transform some inverse problems to ill-posed operator equations of the
first kind. In [8–10], Rosch derived stability estimates for the identification of non-
linear heat transfer laws and investigated numerically the determination of unknown
boundary functions as optimal control problems. In [11, 12], the authors employed
the boundary element method to approximate the unknown boundary functions. In
[13], the authors utilized the conjugate gradient method as an iterative regularization
method to approximate unknown boundary functions. Using these methods, accord-
ing to the author’s experience, usually one should deal with the solution of nonlinear
system of equations or a large number of simultaneous linear algebraic equations.
Furthermore in iterative methods the number of iterations require to achieve a modest
accuracy may become large.

In this work the application of the mollification method and the space marching
scheme is investigated for solving numerically the inverse problem of identification
of nonlinear boundary conditions in heat conduction. Our main purpose of the this
paper is to present and analyze a stable method, based on marching mollification
techniques, for the numerical computation of boundary functions. The mollification
method has been widely used for the stable numerical solution of ill-posed problems
based on parabolic equations [14-18]. This is due to the known fact that mollification
is a reliable regularization procedure. More recently, it has been proved that mol-
lification is a versatile and useful tool when dealing with parabolic equations and
conservation laws [17, 18]. The precise forms of the nonlinear boundary functions
are supposed to be unknown and for this reason a numerical approach is adopted in
which the unknown boundary functions are approximated by polynomial functions
with unknown coefficients to be determined. It should be noted that efficiency, sim-
plicity of implementation and very modest computational costs make the numerical
procedures established in this study particularly attractive.
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The outline of the present paper is as follows: In Section 2, the mathematical
formulation of our interest problem is stated as an inverse problem. A numerical
procedure based on the mollification method and the space marching scheme is
developed for solving the proposed inverse problem in Section 3. The convergence
and stability analysis of solution are established in Section 4. In the last section three
test problems are considered and the numerical results are presented for them.

2 Description of the inverse problem

Consider following initial boundary value problem

ut (x, t) − a2uxx(x, t) = f (x, t), 0 < x < 1, 0 < t < 1, (1)

u(x, 0) = γ (x), 0 ≤ x ≤ 1, (2)

ux(0, t) = G(u(0, t)) + ψ1(t), 0 ≤ t ≤ 1, (3)

ux(1, t) = H(u(1, t)) + ψ2(t), 0 ≤ t ≤ 1, (4)

where u represents the unknown temperature of the one-dimensional rod (0, 1),
f (x, t) show the source (or sink) term, γ (x) is the given initial temperature, the func-
tions G(u) and H(u) represent the unknown law for the boundary conditions and
ψ1(t) and ψ2(t) are known functions of time. It is assumed that f (x, t) and γ (x)

are L2 functions, ψ1(t) and ψ2(t) are continuous functions and G(u) and H(u) are
Lipschitz continuous functions. In addition, the compatibility conditions associated
with (2)–(4) require that γ ′(0) = G(γ (0)) + ψ1(0) and γ ′(1) = H(γ (1)) + ψ2(1).
The existence and uniqueness of solution of direct problem (1)–(4) are investigated in
[1, 7].

The unknown boundary functions have to be identified by means of measurements
of the temperature u. The measurements can be obtained from some interior temper-
ature sensors at positions xi; i = 1, 2, ...S, in the whole time interval (0, 1) or at
discrete times tj ; j = 1, 2, ...S̄, [6]. Here it is considered that the measurements of
the temperature are available at two interior points x1 and x2 in the whole time inter-
val (0, 1). Using these measurements, one can estimates the heat flux at the interior
point x1. The temperature and heat flux at x = x1 (0 < x1 < 1) are considered as
overspecified conditions as follows

u(x1, t) = ϕ1(t), 0 ≤ t ≤ 1, (5)

ux(x1, t) = ϕ2(t), 0 ≤ t ≤ 1. (6)

In sequence we will introduce a numerical marching scheme based on the molli-
fication method (see [15, 16]) to find the solution of the problem (1)–(6) under
the assumption that γ (x), ψ1(t), ψ2(t), ϕ1(t) and ϕ2(t) are only known approxi-
mately as γ ε(x), ψε

1 (x), ψε
2 (x), ϕε

1(t) and ϕε
2(t) such that ‖γ (x) − γ ε(x)‖∞ ≤ ε,

‖ψ1(t) − ψε
1 (t)‖∞ ≤ ε, ‖ψ2(t) − ψε

2 (t)‖∞ ≤ ε, ‖ϕ1(t) − ϕε
1(t)‖∞ ≤ ε and

‖ϕ2(t) − ϕε
2(t)‖∞ ≤ ε. Because of the presence of the noise in the problem’s data,

we first stablize the problem using the mollification method.
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3 Discrete mollification and space marching scheme

3.1 Discrete mollification

Let δ > 0, p > 0, Ap = (
∫ p

−p
exp(−s2)ds)−1, I = [0, 1], Z = {1, 2, · · · , M}, and

Iδ = [pδ, 1 − pδ]. Notice that the interval Iδ is nonempty whenever p < 1/2δ.
Furthermore suppose K = {xj : j ∈ Z} ⊂ I , satisfying

xj+1 − xj > d > 0, j ∈ Z, (7)

and
0 ≤ x1 < x2 < · · · < xM ≤ 1, (8)

where d is a positive constant. Now if G = {gj }j∈Z be a discrete function defined on
K and s0 = sM = 0 and sj = (1/2)(xj + xj+1), 1 ≤ j ≤ M − 1, then the discrete
δ−mollification of G is defined by [14]

JδG(x) =
M∑

j=1

(∫ sj

sj−1

ρδ(x − s)ds

)

gj , (9)

where

ρδ,p(x) =
{

Apδ−1 exp
(
− x2

δ2

)
, |x| ≤ pδ,

0, |x| > pδ.
(10)

Notice that,
∑M

j=1(
∫ sj
sj−1

ρδ(x − s)ds) = ∫ pδ

−pδ
ρδ(s)ds = 1

Let �x = supj∈Z(xj+1 − xj ), some useful results of the consistency, stability and
convergence of discrete δ-mollification are as follows [15-17]

Theorem 1 1. If g(x) is uniformly Lipschitz in I and G = {gj = g(xj ) : j ∈ Z}
is the discrete version of g, then there exists a constant C, independent of δ, such
that

‖ JδG − g ‖∞,Iδ≤ C(δ + �x). (11)

Moreover, if g′(x) ∈ C(I) then,

‖ (JδG)′ − g′ ‖∞,Iδ≤ C

(

δ + �x

δ

)

. (12)

2. If the discrete functions G = {gj : j ∈ Z} and Gε = {gε
j : j ∈ Z}, which are

defined on K , satisfy ‖ G − Gε ‖∞,K≤ ε, then we have

‖ JδG − JδG
ε ‖∞,Iδ≤ ε, (13)

‖ (JδG)′ − (JδG
ε)′ ‖∞,Iδ≤

Cε

δ
. (14)

3. If g(x) is uniformly Lipschitz on I , let G = {gj = g(xj ) : j ∈ Z} be the discrete
version of g and Gε = {gε

j : j ∈ Z} be the perturbed discrete version of g

satisfying ‖ G − Gε ‖∞,K≤ ε. then,

‖ JδG
ε − Jδg ‖∞,Iδ≤ C(ε + �x), (15)

and
‖ JδG

ε − g ‖∞,Iδ≤ C(ε + δ + �x). (16)
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Moreover, if g′(x) ∈ C(I) then,

‖ (JδG
ε)′ − (Jδg)′ ‖∞,Iδ≤

C

δ
(ε + �x), (17)

‖ (JδG
ε)′ − g′ ‖∞,Iδ≤ C

(

δ + ε

δ
+ �x

δ

)

. (18)

Denoting the centered difference operator by D, i.e., Df (x) = f (x+�x)−f (x−�x)
2�x

.
Then we have the following results [14]

Theorem 2 1. If g′ ∈ C1(R1), and G = {gj = g(xj ) : j ∈ Z} is the discrete
version of g, with G, Gε satisfying ‖ G − Gε ‖∞,K≤ ε, then,

‖ D(JδG
ε) − (Jδg)′ ‖∞≤ C

δ
(ε + �x) + Cδ(�x)2, (19)

‖ D(JδG
ε) − g′ ‖∞≤ C

(

δ + ε

δ
+ �x

δ

)

+ Cδ(�x)2. (20)

2. Suppose G = {gj : j ∈ Z} is a discrete function defined on a set K , and Dδ
0 is a

differentiation operator defined by Dδ
0(G) = D(JδG)(x), then

‖ Dδ
0(G) ‖∞,K≤ C

δ
‖ G ‖∞,K . (21)

3.2 Numerical implementation of discrete mollification

Computation of Jδg throughout a domain such as [0, 1] requires handling of data
near the borders. The usual ways are the extension of g to a slightly bigger interval
I ′
δ = [−pδ, 1 + pδ] or the consideration of the mollified function restricted to the

subinterval Iδ = [pδ, 1pδ].
In this regard, different approaches have been proposed in the literature. For

instance in [15] an approach based on the techniques for image reconstruction and
digital signal processing is described. This technique is modified in [17, 18] as a
nonlinear discrete mollifier. Here we follow the strategy introduced in [15]. We
try for constant extension g∗ of g to the intervals [−pδ, 0] and [1, 1 + pδ], satis-
fying the conditions ||Jδg

∗ − g||L2[0,pδ] and ||Jδg
∗ − g||L2[1−pδ,1] are minimum.

At the boundary t = 1, the unique solution to this optimization problem is given
by [15]

g∗ =
∫ 1

1−pδ
[gε(t) − ∫ 1

0 ρδ(t − s)g(s)ds][∫ 1+pδ

1 ρδ(t − s)]dt
∫ 1

1−pδ
[∫ 1+pδ

1 ρδ(t − s)ds]dt
(22)
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A similar result con be obtained at the end point t = 0.
For each δ > 0, the extended function is defined on the interval I ′

δ and the corre-
sponding mollified function is computed on I = [0, 1]. All the conclusions and error
estimates hold in the subinterval Iδ . Details on the computation of mollified operators
and mollification parameters can be found in [15-18].

3.3 Regularized problem and the marching scheme

The regularized problem is formulated as follows

vt (x, t) − a2vxx(x, t) = f (x, t), 0 < x < 1, 0 < t < 1, (23)

v(x, 0) = Jδ′γ (x), 0 ≤ x ≤ 1, (24)

vx(0, t) = G(v(0, t)) + Jδ1ψ1(t), 0 ≤ t ≤ 1, (25)

vx(1, t) = H(v(1, t)) + Jδ2ψ2(t), 0 ≤ t ≤ 1. (26)

To solve this inverse problem, using the overspecified conditions (5)–(6), first
we consider the following auxiliary regulized inverse problem: Determine v(x, t),

vx(x, t) ∈ [0, 1] × [0, 1] satisfying

vt (x, t) − a2vxx(x, t) = f (x, t), 0 < x < 1, 0 < t < 1, (27)

v(x, 0) = Jδ′γ (x), 0 ≤ x ≤ 1, (28)

v(x1, t) = Jδ0ϕ1(t), 0 ≤ t ≤ 1, (29)

vx(x1, t) = Jδ∗
0
ϕ2(t), 0 ≤ t ≤ 1, (30)

where the radii of mollification, δ′, δ1, δ2, δ0 and δ∗
0 are chosen automatically using

the Generalized Cross Validation (GCV) method [15]. The existence and uniqueness
of solution of this problem is proved in [13].

Let M and N be positive integers, h = �x = 1/M and k = �t = 1/N be the
parameters of the finite differences discretization of I = [0, 1], and M1 = [x1/h] (
M1 ∈ {0, 1, 2, . . . ,M}). We introduce the following discrete functions

Ui,n: the discrete computed approximations of v(ih, nk),
Wi,n: the discrete computed approximations of vt (ih, nk),
Qi,n: the discrete computed approximations of vx(ih, nk),
Fi,n: the discrete computed approximations of f (ih, nk).

The algorithm of space marching scheme may be written when 0 < x < x1 (the
backward case) and when x1 < x < 1 (the forward case) as follows

1. Select δ0 = δM1 , δ∗
0 = δ∗

M1
and δ′.

2. Perform mollification of ϕε
1, ϕε

2 in the interval [0, 1].
UM1,n = JδM1

ϕε
1(nk) (n 	= 0), Ui,0 = Jδ′γ ε(ih), i ∈ {0, 1, . . . ,M}

QM1,n = Jδ∗
M1

ϕε
2(nk).

3. Perform mollified differentiation in time of JδM1
ϕε

1(nk). Set
WM1,n = Dt (JδM1

ϕε
1(nk)) (n 	= 0), WM1,0 = Dt (Jδ′

M1
γ ε(M1h)).



Numer Algor (2015) 68:769–790 775

4. For the forward case, initialize i = M1. Do while i ≤ M − 1,

Ui+1,n = Ui,n + hQi,n, (n 	= 0), (31)

Qi+1,n = Qi,n + h

a2

(
Wi,n − Fi,n

)
, (32)

Wi+1,n = Wi,n + hDt (Jδ∗
i
Qi,n). (33)

5. For the backward case, initialize i = M1. Do while i ≥ 1,

Ui−1,n = Ui,n − hQi,n, (n 	= 0), (34)

Qi−1,n = Qi,n − h

a2

(
Wi,n − Fi,n

)
, (35)

Wi−1,n = Wi,n − hDt (Jδ∗
i
Qi,n). (36)

From now on, if Xi,n is a discrete function, we denote |Xi | = maxn |Xi,n|. We
also consider a smoothing assumption to discuss the stability and convergence of the
scheme as follows

u(x, t) ∈ C2(I × I ). (37)

4 Stability and convergence analysis

In this section, we analyze the stability and convergence of the forward marching
scheme (31)–(33) and the backward marching scheme (34)–(36).

Table 1 Relative l2 error norms for the IHCP given by Example 1

Backward Case Forward Case

M N ε u ut ux u ut ux

64 64 0.0001 0.016027 0.018359 0.020782 0.016812 0.017623 0.020765

128 128 0.0001 0.0081815 0.010998 0.010414 0.0083846 0.013866 0.010387

256 256 0.0001 0.0041479 0.0089689 0.0052912 0.0042121 0.010788 0.0052184

512 512 0.0001 0.00209 0.005965 0.0026925 0.0021374 0.0087809 0.0029689

64 64 0.001 0.016025 0.030214 0.020893 0.016837 0.044144 0.020918

128 128 0.001 0.0081869 0.027501 0.010309 0.0083926 0.035378 0.010718

256 256 0.001 0.0041353 0.011848 0.005599 0.0041642 0.0099161 0.0054997

512 512 0.001 0.0022839 0.017451 0.0038994 0.0021011 0.0064247 0.0027941

64 64 0.01 0.015974 0.051993 0.021299 0.017518 0.068423 0.021183

128 128 0.01 0.0086671 0.03394 0.011564 0.0089155 0.034436 0.011565

256 256 0.01 0.0053385 0.056553 0.010614 0.0057859 0.020754 0.0081614

512 512 0.01 0.0039662 0.095607 0.009806 0.0036231 0.015102 0.0045945
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Theorem 3 For the forward marching scheme (31)–(33), there exists a constant 
1,
such that

max{|UM |, |QM |, |WM |, Mf } ≤ 
1 max{|UM1 |, |QM1 |, |WM1 |, Mf }, (38)

and for the backward marching scheme (34)–(36), there exists a constant 
2, such
that

max{|U0|, |Q0|, |W0|, Mf } ≤ 
2 max{|UM1 |, |QM1 |, |WM1 |, Mf }. (39)

Proof Here the first inequality for the forward case is proved. The second
inequality may be derived similarly. Let |δ|−∞ = mini (δi , δ

∗
i , δ′

i ) and Mf =
max(x,t)∈[0,1]×[0,1]{|f (x, t)|}. Applying Theorem 2 yields

|Dt (Qi,n)| ≤ C

|δ|−∞
|Qi,n|, (40)

where C is a constant. Now by using (33) and (40) we have

|Wi+1,n| ≤
(

1 + h
C

|δ|−∞

)

max{|Qi,n|, |Wi,n|}. (41)

Also from (31) and (32) we have

|Ui+1,n| ≤ (1 + h) max{|Ui,n|, |Qi,n|}, (42)

|Qi+1,n| ≤
(

1 + h

a2

)

max{|Qi,n|, |Wi,n|, Mf }. (43)

Let Cδ = max
{

1, 1
a2 , C

|δ|−∞

}
, from (41)–(42) we obtain

max{|Ui+1|, |Qi+1|, |Wi+1|, Mf } ≤ (1 + hCδ) max{|Ui |, |Qi |, |Wi |, Mf },
and iterating this last inequality L = M − M1 times, we have

max{|UM |, |QM |, |WM |, Mf } ≤ (1 + hCδ)
L max{|UM1 |, |QM1 |, |WM1 |, Mf },

which implies

max{|UM |, |QM |, |WM |, Mf } ≤ exp(Cδ) max{|UM1 |, |QM1 |, |WM1 |, Mf }.
Letting 
1 = exp( Cδ) completed the proof of this statement.

Theorem 4 For the forward and backward marching schemes (31)–(33) and (34)–
(36), for fixed δ as h, k and ε tend to zero, the discrete mollified solution converges
to the mollified exact solution restricted to the grid points.

Proof Here we prove the convergence of the forward case. The convergence of the
backward scheme yields similarly. From the definitions of discrete error functions,
let
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Table 2 The RMS-norm errors between the computed and the exact boundary functions G and H for the
IHCP given by Example 1

M = N K 1 2 3 4 5 6 7 8

ε

64 Gk 0.11355 0.057522 0.057601 0.059144 0.062237 0.064666 0.066637 0.068153

0.0001 Hk 0.10232 0.10232 0.10211 0.10197 0.10179 0.10169 0.10156 0.10151

128 Gk 0.080633 0.023356 0.022989 0.022618 0.022589 0.022761 0.02309 0.023308

0.0001 Hk 0.035698 0.0357 0.035663 0.035661 0.035621 0.035618 0.035584 0.03558

256 Gk 0.057145 0.010912 0.0085324 0.0085636 0.0084735 0.008401 0.00834 0.0083163

0.0001 Hk 0.012785 0.012827 0.012835 0.012863 0.012876 0.01292 0.012931 0.012976

512 Gk 0.040337 0.006575 0.0031953 0.0031917 0.003258 0.0032148 0.0032585 0.003226

0.0001 Hk 0.0048848 0.0052031 0.0052313 0.0055535 0.0055847 0.0059389 0.0059949 0.0063163

64 Gk 0.11452 0.062038 0.062003 0.062348 0.067212 0.068581 0.076065 0.076223

0.001 Hk 0.099974 0.10012 0.099608 0.10028 0.099872 0.10025 0.09993 0.099961

128 Gk 0.079614 0.026957 0.029336 0.02826 0.028367 0.028575 0.028693 0.030271

0.001 Hk 0.03432 0.034372 0.034981 0.034958 0.035555 0.035615 0.035975 0.036188

256 Gk 0.056878 0.01115 0.0082421 0.0083799 0.0085189 0.0089741 0.0091166 0.0092003

0.001 Hk 0.012231 0.012465 0.01267 0.012955 0.013099 0.013773 0.013805 0.014803

512 Gk 0.040342 0.0064722 0.0026441 0.0027345 0.0028311 0.0030443 0.0031136 0.0032129

0.001 Hk 0.0053694 0.0061462 0.0064744 0.0071687 0.0072059 0.0072568 0.007235 0.0070916

64 Gk 0.1137 0.043064 0.044237 0.049479 0.049692 0.049663 0.050169 0.053839

0.01 Hk 0.11262 0.11476 0.11399 0.11352 0.11267 0.11225 0.11063 0.11082

128 Gk 0.080657 0.028678 0.029496 0.028755 0.028687 0.02893 0.028904 0.029194

0.01 Hk 0.033708 0.033711 0.033799 0.034201 0.03434 0.034688 0.035021 0.03516

256 Gk 0.056499 0.012366 0.0088885 0.0097291 0.010153 0.011429 0.013503 0.013863

0.01 Hk 0.014342 0.015611 0.015623 0.01587 0.016295 0.016259 0.016737 0.016797

512 Gk 0.040267 0.0085484 0.006471 0.006582 0.0070334 0.0068523 0.0066936 0.0072813

0.01 Hk 0.0062129 0.007756 0.0080824 0.0084686 0.0085547 0.008418 0.009559 0.0094984

Table 3 The coefficients aj of the function G(u) � GK(u) = ∑K
j=0 aj u

K−j for Example 1

K 1 2 3 4 5 6 7 8

a0 0.33464 2.8052 2.9069 0.27585 5.3526 −22.5096 56.3167 −1234.8305

a1 −0.59803 −3.3621 −3.0065 2.1676 −17.7164 96.383 −288.8251 6744.5713

a2 – 0.52636 0.33732 −2.287 25.7705 −168.0696 627.1084 −15908.6813

a3 – – −0.21982 0.036682 −17.367 155.4503 −745.3833 21158.5443

a4 – – – −0.1744 4.723 −78.9089 525.3908 −17349.4315

a5 – – – – −0.74063 19.9484 −218.4712 8981.0536

a6 – – – – – −2.2741 48.6368 −2865.4322

a7 – – – – – – −4.7524 514.1935

a8 – – – – – – – -39.9711
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Table 4 The coefficients bj of the function H(u) � HK(u) = ∑K
j=0 bj u

K−j for Example 1

K 1 2 3 4 5 6 7 8

b0 1.0019 0.012298 −0.012289 0.05938 −0.045578 0.23198 −0.16952 0.73674

b1 0.0069653 0.95289 0.086667 −0.49403 0.52309 −2.8839 2.6554 −12.22

b2 – 0.052118 0.8096 1.506 −2.3352 14.7065 −17.4843 87.6513

b3 – – 0.1396 −0.98544 5.0665 −39.3478 62.7248 −354.9403

b4 – – – 0.96044 −4.3345 58.2132 −132.3863 887.1334

b5 – – – – 2.1853 −44.1199 164.3522 −1400.8157

b6 – – – – – 14.3111 −110.1031 1364.1842

b7 – – – – – – 31.5509 −747.8782

b8 – – – – – – – 177.3853

�Ui,n = Ui,n−v(ih, nk), �Qi,n = Qi,n−vx(ih, nk), �Wi,n = Wi,n−vt (ih, nk).

Using Taylor series, we obtain some useful equations satisfied by the mollified
solution v, namely,

v((i + 1)h, nk) = v(ih, nk) + hvx(ih, nk) + O(h2),

vx((i + 1)h, nk) = vx(ih, nk) + h

a2 (vt (ih, nk) − f (ih, nk)) + O(h2),

vt ((i + 1)h, nk) = vt (ih, nk) + h

(
d

dt
vx(ih, nk)

)

+ O(h2).

Fig. 1 The analytical and numerical solutions for the boundary function G(u) for the IHCP given by
Example 1
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Fig. 2 The analytical and numerical solutions for the boundary function H(u) for the IHCP given by
Example 1

On the other hand, one may write

�Ui+1,n = �Ui,n + (Ui+1,n − Ui,n) − (v((i + 1)h, nk) − v(ih, nk))

= �Ui,n + h�Qi,n + O(h2), (44)

�Qi+1,n = �Qi,n + (Qi+1,n − Qi,n) − (vx((i + 1)h, nk) − vx(ih, nk))

= �Qi,n + h

a2
�Wi,n + O(h2), (45)

�Wi+1,n = �Wi,n + (Wi+1,n − Wi,n) − (vt ((i + 1)h, nk) − vt (ih, nk))

= �Wi,n + h(Dt (Jδ∗
i
Qi,n) − vxt (ih, nk)) + O(h2). (46)

Table 5 Relative l2 error norms for the IHCP given by Example 2

Backward Case Forward Case

M N ε u ut ux u ut ux

64 64 0.0001 0.0087446 0.068484 0.025957 0.0066747 0.014687 0.024013

128 128 0.0001 0.0022134 0.016669 0.0084626 0.0015356 0.0095322 0.007637

256 256 0.0001 0.0016344 0.010641 0.0053095 0.0011785 0.0067696 0.0049338

512 512 0.0001 0.0014302 0.018803 0.0038801 0.0010641 0.0042677 0.0036166

64 64 0.001 0.0086002 0.13035 0.02631 0.0066426 0.051252 0.024691

128 128 0.001 0.0023625 0.019731 0.0079428 0.0016294 0.014727 0.0080066

256 256 0.001 0.0020292 0.022951 0.0047831 0.0012216 0.014843 0.0052795

512 512 0.001 0.0019211 0.0098536 0.0030316 0.001138 0.011975 0.0040833

64 64 0.01 0.01057 0.053051 0.021717 0.0087537 0.054761 0.028153

128 128 0.01 0.0051014 0.04219 0.0070481 0.0038603 0.045427 0.01253

256 256 0.01 0.0033785 0.085317 0.0051648 0.0026201 0.029708 0.0085531

512 512 0.01 0.0039452 0.23022 0.006241 0.0017832 0.017943 0.0060784
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Now from equalities (44)–(46), using the error estimates of discrete mollification
from Theorem 2 we have

|�Ui+1,n| ≤ |�Ui,n| + h|�Qi,n| + O(h2),

|�Qi+1,n| ≤ |�Qi,n| + h

a2
|�Wi,n| + O(h2)

|�Wi+1,n| ≤ |�Wi,n| + h

(

C
|�Qi,n| + k

|δ|−∞
+ Cδ∗k2

)

+ O(h2).

Suppose

�i = max{|�Ui,n|, |�Wi,n|, |�Qi,n|}, C0 = max

{

1,
1

a2
,

C

|δ|−∞

}

, C1 = ck

|δ|−∞
+ Cδ∗k2. (47)

Then we obtain

�i+1 ≤ (1 + hC0)�i + hC1 + O(h2) ≤ (1 + hC0)(�i + C1) + O(h2), (48)

Table 6 The RMS-norm errors between the computed and the exact boundary functions G and H for the
IHCP given by Example 2

M = N K 1 2 3 4 5 6

ε

64 Gk 0.026568 0.01978 0.019999 0.020106 0.02015 0.020179

0.0001 Hk 0.021001 0.020984 0.021156 0.021446 0.021713 0.021789

128 Gk 0.017064 0.0068626 0.0068875 0.0069002 0.0069067 0.0069103

0.0001 Hk 0.0043505 0.0044436 0.0044434 0.0044441 0.0044427 0.0044368

256 Gk 0.012174 0.0024982 0.0025138 0.0025137 0.0025191 0.0025189

0.0001 Hk 0.0018895 0.0019649 0.0019616 0.0019671 0.0019686 0.0019674

512 Gk 0.0087666 0.00091455 0.00093377 0.00093513 0.00094135 0.0009411

0.0001 Hk 0.00097526 0.0010088 0.0010107 0.0010113 0.0010118 0.0010127

64 Gk 0.026594 0.02028 0.02039 0.020572 0.020585 0.020639

0.001 Hk 0.020985 0.020954 0.02076 0.021191 0.021115 0.021163

128 Gk 0.017171 0.0065618 0.0065985 0.0066075 0.0066329 0.006634

0.001 Hk 0.0041409 0.0042992 0.0042988 0.0043284 0.0043992 0.0044635

256 Gk 0.012274 0.0022328 0.0022751 0.002276 0.0023024 0.0023138

0.001 Hk 0.0019457 0.0020441 0.0020575 0.0021047 0.0021747 0.002246

512 Gk 0.0088433 0.00078561 0.00083135 0.00084304 0.00088251 0.00091965

0.001 Hk 0.00094839 0.0010912 0.0011308 0.0011951 0.0013154 0.0014557

64 Gk 0.026896 0.01705 0.017019 0.017003 0.017446 0.0175

0.01 Hk 0.020899 0.020963 0.021064 0.020897 0.023505 0.023473

128 Gk 0.017435 0.0053519 0.0054839 0.0055712 0.0055803 0.0057199

0.01 Hk 0.0042286 0.0046001 0.0051943 0.0051946 0.0056167 0.0056961

256 Gk 0.012554 0.001955 0.0019761 0.0019949 0.0020508 0.0023352

0.01 Hk 0.0015024 0.00182 0.0018546 0.0019774 0.002225 0.0024216

512 Gk 0.0090422 0.00076111 0.00088195 0.0011646 0.0011809 0.0013363

0.01 Hk 0.001155 0.0012728 0.0013351 0.0020584 0.001843 0.0016649
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Table 7 The coefficients aj of the function G(u) � GK(u) = ∑K
j=0 aj u

K−j for Example 2

K 1 2 3 4 5 6

a0 2.0345 1.0035 0.086192 0.16087 5.4242 5.0898

a1 −0.56454 0.49109 0.80653 −0.40196 −20.364 −17.6513

a2 – 0.0026179 0.63752 1.3526 30.2615 22.7687

a3 – – −0.032711 0.37084 −21.2435 −12.2714

a4 – – – 0.015224 8.5807 2.0858

a5 – – – – −1.161 1.8336

a6 – – – – – −0.35732

and after L = M − M1 iterations

�L ≤ exp(C0)(�M1 + C1). (49)

Moreover from
|�UM1,n| ≤ C(ε + k),

|�QM1,n| ≤ C(ε + k),

|�WM1,n| ≤ C

|δ|−∞
(ε + k) + Cδk

2,

we see that when ε, h, and k tend to 0, �M1 and C1 tend to 0. Consequently (�0+C1)

tends to 0 and so does �L and this complete the proof of this theorem.

Corollary 1 For the boundary functions G and H in the regulized problem (23)–
(26), using the numerical results of auxiliary problem (27)–(30) yield that as h, k and
ε tend to zero, �G0,n and �H1,n tend to zero, where

�G0,n = G(v(0, tn)) − G(v0,n), �H1,n = H(v(1, tn)) − H(vM,n). (50)

Proof For the boundary function H from (26) we have

|�H1,n| = |(vx(1, nk) − QM,n) − (Jδ2ψ2(nk) − Jδ2ψ
ε
2 (nk))|

≤ |vx(1, nk) − QM,n| + |Jδ2ψ2(nk) − Jδ2ψ
ε
2 (nk)|. (51)

Table 8 The coefficients bj of the function H(u) � HK(u) = ∑K
j=0 bj u

K−j for Example 2

K 1 2 3 4 5 6

b0 −0.67048 0.3462 0.22131 21.7783 429.6952 −2371.2762

b1 0.93737 −0.96396 0.06685 −36.3106 −877.5902 6379.0583

b2 – 0.99861 −0.84744 22.9091 713.1875 −7073.7371

b3 – – 0.98255 −7.1563 −287.9296 4141.8443

b4 – – – 1.6319 56.9949 −1351.0518

b5 – – – – −3.6386 232.1254

b6 – – – – – −15.6126
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Fig. 3 The analytical and numerical solutions for the boundary function G(u) for the IHCP given by
Example 2

Using the results of Theorems 1 and 5, one may see that there exist a constant B such
that

|�H1,n| ≤ exp(C0)(�M1 + C1) + B(ε + k). (52)

This implies that when ε, h, and k tend to zero, |�H1,n| tends to zero too. Similar
result can be derived for the boundary function G.

Fig. 4 The analytical and numerical solutions for the boundary function H(u) for the IHCP given by
Example 2
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5 Numerical results and discussion

To solve the inverse problem of determining the solution (u, G, H), we try to
approximate the functions G and H by a polynomial of degree ≤ K as follows

PK = {
K∑

i=0

aiu
K−i , ai ∈ R}, (53)

where K maybe considered arbitrary. This assumption reduces the function estima-
tion (infinite dimensional) to a parameter estimation (finite dimensional), also aims
to improve the stability of the numerical approximate solution. Using the boundary
condition (25) one may see that

G(v0,n) = Q0,n − Jδ1ψ
ε
1 (nk), n = 0, 1, 2, · · · , N. (54)

To approximate the unknown function G, we deal with a common curve fitting
problem as: Determine the polynomial approximation of the unknown function G

where its values are known at N + 1 points. The unknown polynomial coefficients
ai, i = 0, 1, · · · , K may be determined using least squares optimization techniques.
These coefficients have been calculated by MATLAB software. Similar results may
be derived for the function H using mollified solution vM,n and QM,n. In this section,
we present some numerical results. In all cases, without loss of generality, we set
p = 3 (see [15,16]). The radii of mollification are always chosen automatically using
the mollification and GCV methods.

Table 9 Relative l2 error norms for the IHCP given by Example 3

Backward Case Forward Case

M N ε u ut ux u ut ux

64 64 0.0001 0.0081863 0.022012 0.020366 0.0045932 0.00159 0.015838

128 128 0.0001 0.0020098 0.0062643 0.0047161 0.001093 0.0010868 0.0027871

256 256 0.0001 0.0014906 0.0079449 0.0051378 0.00080125 0.0022092 0.0030478

512 512 0.0001 0.001452 0.0074564 0.0049373 0.00081167 0.002297 0.0031131

64 64 0.001 0.0083708 0.035896 0.0213 0.0046069 0.021082 0.016526

128 128 0.001 0.001925 0.016141 0.0044302 0.0023407 0.081811 0.022102

256 256 0.001 0.0015011 0.0078513 0.0054683 0.0012772 0.014151 0.0069964

512 512 0.001 0.0015409 0.01188 0.0068259 0.0012761 0.014725 0.0072605

64 64 0.01 0.0088357 0.048363 0.024418 0.006287 0.061641 0.03245

128 128 0.01 0.002114 0.027392 0.0076254 0.0035297 0.07613 0.028822

256 256 0.01 0.0018593 0.015476 0.0091008 0.0023591 0.039798 0.016102

512 512 0.01 0.0020424 0.032789 0.0149 0.0025049 0.03875 0.016097
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Discretized measured approximations of boundary data are modeled by adding
random errors to the exact data functions. For example, for the boundary data
function h(x, t), its discrete noisy version is generated by [15]

hε
j,n = h(xj , tn) + εj,n, j = 0, 1, . . . , N, n = 0, 1, . . . , T , (55)

where the (εj,n)’s are Gaussian random variables with variance ε2.
To evaluate the errors for the marching scheme we use the following relative

weighted l2-norm

E =
[
(1/(M + 1)(N + 1))�M

i=0 �N
j=0|v(ih, j l) − Ui,j |2

]1/2

[
(1/(M + 1)(N + 1))�M

i=0 �N
j=0|v(ih, j l)|2

]1/2
, (56)

and to evaluate the function specification error we use following RMS-norm

R =
√

1

N

(
(w1 − W1)2 + (w2 − W2)2 + . . . + (wN − WN)2

)
, (57)

where wi and Wi respectively represent the exact and computed solutions.

Example 1 In general with the presence of radiation, the heat flux on a surface is
the sum of two terms corresponding to convection and surface radiation [2, 4]. As
the first example we examine an interesting and important nonlinear IHCP in which
the relation between the heat flux and temperature at the boundaries, from a phys-
ical point of view, is a fourth-order power in the temperature representing radiative
boundary conditions. We investigate the nonlinear IHCP (1)–(6) with the following
assumptions

x1 = 0.5, ϕ1(t) = e−t , ϕ2(t) = πe−t , γ (x) = 2 − sin(πx) − cos(πx), a = 1

f (x, t) = e−t (cos(πx) + sin(πx) − 2) − e−t (π2 cos(πx) + π2sin(πx)),

ψ1(t) = e−t − e−4t − πe−t ,

ψ2(t) = e−t (π − 3).

The exact solutions for u(x, t), G(u) and H(u) may be derived as

u(x, t) = e−t (2 − cos(πx) − sin(πx)) , G(u) = u4 − u, H(u) = u.

Table 1 displays the relative l2 errors for computing u, ut , ux at three noise lev-
els ε = 0.01, 0.001, 0.0001 for N = M = 64, 128, 256, 512. It can be
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clearlyobserved that at different noise levels, the relative l2 errors decreased gradually
by increasing the mesh points in both backward and forward cases.

Table 2 illustrates the RMS-norm errors between the computed and the exact
boundary functions G and H when K = 1, 2, ..., 8, ε = 0.0001, 0.001, 0.01 and
M = N = 64, 128, 256, 512. The polynomials are scaled to increase the accu-
racy. The coefficients aj and bj of the functions G(u) � GK(u) = ∑K

j=0 aju
K−j

and H(u) � HK(u) = ∑K
j=0 bju

K−j are tabulated in Tables 3 and 4 when
M = N = 512 and ε = 0.0001. Furthermore, Figs. 1 and 2 show the compari-
son between the exact and the computed solutions for both functions G(u) and H(u)

(M = N = 512 and ε = 0.0001). Generally the numerical results demonstrate that
at fix noise levels, decreasing the size of h increases the accuracy of the numerical
results.

Table 10 The RMS-norm errors between the computed and the exact boundary functions G and H for
the IHCP given by Example 3

M = N K 1 2 3 4 5 6 7 8

ε

64 Gk 0.13319 0.078217 0.059943 0.062005 0.056257 0.047769 0.04543 0.045433

0.0001 Hk 0.36496 0.095707 0.095812 0.053323 0.053521 0.041231 0.042215 0.036212

128 Gk 0.091844 0.048243 0.026861 0.026234 0.021563 0.01824 0.017191 0.01455

0.0001 Hk 0.25771 0.064457 0.064541 0.032405 0.032551 0.021056 0.021368 0.015146

256 Gk 0.06547 0.035162 0.022657 0.022956 0.01848 0.020535 0.018436 0.016051

0.0001 Hk 0.18225 0.045663 0.045937 0.023243 0.023493 0.016703 0.018235 0.013075

512 Gk 0.046417 0.025313 0.016774 0.018383 0.014109 0.01704 0.014582 0.013701

0.0001 Hk 0.12888 0.032318 0.032556 0.016483 0.016682 0.012317 0.013575 0.0097627

64 Gk 0.13342 0.077586 0.061276 0.062029 0.056935 0.049887 0.047371 0.047557

0.001 Hk 0.36501 0.096317 0.096351 0.053841 0.054002 0.042546 0.043555 0.037129

128 Gk 0.092647 0.049888 0.033408 0.033491 0.028503 0.032378 0.0315 0.025043

0.001 Hk 0.25772 0.064648 0.065034 0.032953 0.033442 0.024218 0.026159 0.019125

256 Gk 0.065142 0.034486 0.020253 0.019919 0.016186 0.015026 0.01389 0.011558

0.001 Hk 0.18225 0.045588 0.045711 0.023034 0.023211 0.015434 0.016254 0.011589

512 Gk 0.046448 0.025395 0.016935 0.01864 0.014281 0.017262 0.014837 0.013664

0.001 Hk 0.12888 0.032326 0.032589 0.016523 0.016739 0.012441 0.013784 0.0098783

64 Gk 0.15099 0.11384 0.13595 0.19077 0.18491 0.37333 0.38234 0.57905

0.01 Hk 0.36496 0.09471 0.099403 0.063204 0.064316 0.065097 0.069464 0.059262

128 Gk 0.10865 0.076226 0.10989 0.13248 0.16576 0.27527 0.35395 0.44854

0.01 Hk 0.25779 0.066878 0.068755 0.041944 0.043123 0.051713 0.055024 0.049349

256 Gk 0.068558 0.042059 0.039409 0.052784 0.04105 0.072254 0.079674 0.079012

0.01 Hk 0.18227 0.046582 0.047743 0.026124 0.026631 0.027146 0.032691 0.024178

512 Gk 0.048571 0.030853 0.028864 0.040284 0.031065 0.051822 0.058042 0.057986

0.01 Hk 0.12889 0.033145 0.034099 0.018652 0.019334 0.020077 0.024592 0.017754
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Since the functions G and H are analytically quartic and linear, we expect the
degree of these functions to be K = 4 and K = 1 respectively to give accu-
rate approximations. Although the values of the approximations of ak and bk , when
K = 1, 2..., 8 deviate significantly from their analytical values, we still obtain good
approximations for the boundary functions. This can be explained by the fact that a
higher-order function with a variety of coefficients can still be used to approximate
with a reasonable accuracy a quartic or a linear function [11].

Example 2 Consider the problem (1)–(6) with the following assumptions

x1 = 0.4, ϕ1(t) = 1

t2 + 29
25

, ϕ2(t) = − 4

5
(
t2 + 29

25

)2
, γ (x) = 1

x2 + 1
, a = 2

f (x, t) = −2 t + x2 (2 t + 24) − 8 t2 + 2 t3 − 8
(
t2 + x2 + 1

)3
,

ψ1(t) = − t2 + 3

2
(
t2 + 1

)2
, ψ2(t) = −e

− 1
t2+2 − 2

(
t2 + 2

)2
.

The exact solutions for u(x, t), G(u) and H(u) may be derived as

u(x, t) = 1

t2 + x2 + 1
, G(u) = u2 + 1

2
u, H(u) = e−u.

The relative l2 errors for computing u, ut , ux in three noise levels when M =
N = 64, 128, 256, 512, are shown in Table 5. Table 6 illustrates the RMS-
norm errors between the computed and the exact boundary functions G and H

when the degree K of the functions GK(u) and HK(u) increases gradually from
1 to 6 and ε = 0.0001, 0.001, 0.01 and M = N = 64, 128, 256, 512. The
numerical results obtained for the coefficients aj , bj tabulated in Tables 7 and 8

Table 11 The coefficients aj of the function G(u) � GK(u) = ∑K
j=0 aj u

K−j for Example 3

K 1 2 3 4 5 6 7 8

a0 −0.31999 −0.28581 0.31406 −0.10023 −0.31414 0.64676 −0.088708 −2.0807

a1 0.25112 0.25019 −1.2252 0.71387 1.4664 −4.1845 1.266 16.5075

a2 – 0.062432 0.99766 −1.7371 −2.0619 10.2351 −5.8938 −52.7717

a3 – – −0.060208 1.2234 0.33436 −11.3778 12.6002 86.4005

a4 – – – −0.082247 0.63704 4.9654 −13.0897 −75.7549

a5 – – – – −0.044292 −0.27942 5.5775 33.7685

a6 – – – – – −0.0020517 −0.36899 −7.0989

a7 – – – – – – 0.0010371 1.0592

a8 – – – – – – – −0.037167
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Fig. 5 The analytical and numerical solutions for the boundary function G(u) for the IHCP
given by Example 3

(M = N = 512 and ε = 0.0001). As we expected, the relative l2 errors and the RMS-
norm errors of numerical results was gradually decreased by increasing the mesh
points.

Finally Figs. 3 and 4 illustrate the comparison between the exact and the computed
solutions for both functions G(u) and H(u) when M = N = 512 and ε = 0.0001.

Example 3 As the final test problem consider the problem (1)–(6) with the following
assumptions

x1 = 0.65, ϕ1(t) = 2 t + 169

400
, ϕ2(t) = 1.3, γ (x) = x2, a = 1, f (x, t) = 0,

ψ1(t) =
{ −4 t2, 0 < t < 1

4
1
2 (2 t − 1), 1

4 ≤ t
, ψ2(t) =

{
1 − 2 t, 0 < t < 1

2
2 t − 1, 1

2 ≤ t
.

Fig. 6 The analytical and numerical solutions for the boundary function H(u) for the IHCP given by
Example 3
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The exact solutions for u(x, t), G(u) and H(u) may be derived as

u(x, t) = x2+2 t, G(u) =
{

u2, 0 < u < 1
2

1
2 (1 − u), 1

2 ≤ u.
, H(u) =

{
u, 0 < u < 2
4 − u, 2 ≤ u.

.

Increasing the degree K of the functions GK(u) and HK(u) from 1 to 8, when
ε = 0.0001, 0.001, 0.01 and M = N = 64, 128, 256, 512 results in gradual
improvement in the accuracy of the relative l2 errors for computing u, ux , ut tabulated
in Table 9, the RMS-norm errors between the computed and the exact boundary func-
tions G and H tabulated in Table 10, and the coefficients aj and bj ; j = 1, 2, ..8 of
the function GK(u) and HK(u) tabulated in Tables 11 and 12. Figures 5 and 6 show
the comparison between the exact and the computed solutions for both functions
G(u) and H(u) when M = N = 512 and ε = 0.0001.

6 Conclusion

In this study, a class of inverse heat conduction problems have been investigated
with unknown nonlinear boundary conditions. A regularization approach based on
the mollification method and the space marching scheme is developed to solve the
proposed inverse problem numerically and the missing terms involving the boundary
conditions are constructed in the form of a polynomial. The stability and convergence
of the solution of the proposed numerical approach are proved and some examples
are investigated to support the main results of this work. The theoretical and numer-
ical results presented here validate the use of discrete mollification as a suitable
method for determining the boundary condition laws in one-dimensional inverse heat
conduction problems. Future work will concern an extension to higher dimensions.
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