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ABSTRACT: River flow monitoring is a critical task for land management, agriculture, fishery, industry, and other con-
cerns. Herein, a robust least squares triple cross-wavelet analysis is proposed to investigate possible relationships between
river flow, temperature, and precipitation in the time–frequency domain. The Athabasca River basin (ARB) in Canada is
selected as a case study to investigate such relationships. The historical climate and river flow datasets since 1950 for three
homogeneous subregions of the ARB were analyzed using a traditional multivariate regression model and the proposed
wavelet analysis. The highest Pearson correlation (0.87) was estimated between all the monthly averaged river flow, tem-
perature, and accumulated precipitation for the subregion between Hinton and Athabasca. The highest and lowest correla-
tions between climate and river flow were found to be during the open warm season and cold season, respectively.
Particularly, the highest correlations between temperature, precipitation, and river flow were in May (0.78) for Hinton,
July (0.54) for Athabasca, and September (0.44) for Fort McMurray. The new wavelet analysis revealed significant coher-
ency between annual cycles of climate and river flow for the three subregions, with the highest of 33.7% for Fort McMurray
and the lowest of 4.7% for Hinton with more coherency since 1991. The phase delay analysis showed that annual and semi-
annual cycles of precipitation generally led the ones in river flow by a few weeks mainly for the upper and middle ARB
since 1991. The climate and river flow anomalies were also demonstrated using the baseline period 1961–90, showing a sig-
nificant increase in temperature and decrease in precipitation since 1991 for all the three subregions. Unlike the multivari-
ate regression, the proposed wavelet method can analyze any hydrometeorological time series in the time–frequency
domain without any need for resampling, interpolation, or gap filling.

KEYWORDS: Algorithms; Data processing/distribution; Remote sensing; Regression analysis;
Spectral analysis/models/distribution; Time series

1. Introduction

Maintaining and monitoring water availability in water-
sheds is crucial for the preservation of the natural ecosys-
tem, livelihood of residents, and industries (Xu and Singh
2004; Wolfe et al. 2005). Climate and land cover change play
a significant role in the hydrological behavior of watersheds
and can significantly influence the ecology and ecosystem
(Kerkhoven et al. 2011; Shrestha et al. 2017; Shah et al.
2020). For example, Morales-Marı́n et al. (2019) mentioned
that increasing river temperature can raise metabolic rates
and force fish species to migrate upstream where the water
is cooler, or forest fires can significantly damage vegetation
canopy and increase runoff after rainfalls or snowmelts
(Afrin et al. 2019; Zaghloul et al. 2022). The main parame-
ters affecting hydrology and water availability are tempera-
ture, precipitation, land use and land cover (LULC), soil
characteristics, and topography (Monk et al. 2012; Eum et al.
2016; Peters et al. 2013, 2022; Belvederesi et al. 2022). In cer-
tain basins, particularly in cold climates, study of streamflow

influential factors, such as climate and LULC, is very
challenging.

Various models have been employed in literature for ana-
lyzing streamflow and its influential factors, such as the Soil
and Water Assessment Tool (SWAT), bivariate nonparametric
estimator, multivariate double logarithm, multivariate regression,
and cross-wavelet andwavelet coherence analyses (Shrestha et al.
2017; Pérez Ciria and Chiogna 2020; Ghaderpour et al. 2021;
Khan et al. 2022). Wavelet analysis has proven to be very effec-
tive for monitoring and prediction of streamflow, vegetation, and
climate measurements (Ghaderpour et al. 2021; Dastour et al.
2022). In fact, decomposing a nonstationary time series into the
time–frequency domain can reveal the periodic and aperiodic
components of time series. Traditional correlation methods, such
as Pearson correlation, cannot show the dynamic of measure-
ment dependency over time; however, wavelet coherency analy-
sis can show how measurements are coherent over time and
frequency, providing an excellent tool in hydrometeorological
studies. Thus far, the cross-wavelet and coherency analyses have
been mainly applied to a pair of time series. In the present work,
a robust triple cross-wavelet method for simultaneous analysis of
three time series is proposed (i.e., river flow, precipitation, and
temperature).

Herein, the Athabasca River basin (ARB) is chosen as a
case study because it is in a cold climate region whose stream-
flow is highly sensitive to climate change and has a great
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importance for the province of Alberta in Canada (Zaghloul
et al. 2022). In the present work, a traditional multivariate
regression model is applied to show the correlation between
river flow, precipitation, and temperature for three sub-
regions of ARB and to compare the results with the triple cross-
wavelet analysis. The results presented in this research can be
considered as a complement to the results by Ghaderpour et al.
(2021), Dastour et al. (2022), and Zaghloul et al. (2022) in that
they show how the principal climatic factors (i.e., precipitation
and temperature) simultaneously have influenced the river flow
of Athabasca River in each calendar month and season, and in
the time–frequency domain.

a. Earlier research on the Athabasca River basin

The ARB consists of boreal forests, providing livelihood to
indigenous people and a habitat for many wildlife species.
Human activities in the ARB include fishing, coal, and oil
sand mining, natural gas extraction, agriculture, and pulp and
paper production (Afrin et al. 2019; Gillanders et al. 2008).
Many studies have been done on the ARB in recent years.
Shrestha et al. (2017) utilized the Soil and Water Assessment
Tool (SWAT) to evaluate the effect of climate change on wa-
ter resources and showed that the water resources of the
ARB possibly will increase in the future. In another study,
Shrestha and Wang (2018) applied SWAT and concluded that
the climate influence on soil erosion of the ARB is region-
based and LULC dependent. Hwang et al. (2018) used a long-
term water balance technique to demonstrate how the river
flow downstream of the ARB (e.g., Fort McMurray) is signifi-
cantly higher than the flow upstream of the ARB (e.g., Hinton).
Rood et al. (2015) estimated trends for century-long river flows
in the ARB using the linear Pearson correlation and nonpara-
metric Kendall methods. Their results showed an overall decline
in annual flow close to the mountainous region (Hinton). Other
studies also showed a decline in the Athabasca River flow over
the past 70 years (Zhang et al. 2001; Burn and Elnur 2002;
Zaghloul et al. 2022). Climate change has resulted in shifting
peak spring flows to earlier dates, increased winter stream-
flow, and decreased summer streamflow (Burn et al. 2004a,b;
Eum et al. 2017; Rood et al. 2008; Schindler and Donahue
2006). In addition, a warming trend during the winter and a
regime shift from wet to dry in the Palmer drought severity
index (PDSI) have been found since 1980 for the Peace–
Athabasca delta (Timoney 2021). Previous studies have con-
firmed that the hydrology of the ARB is changing due to
increasing temperatures in the Canadian province of Alberta
by studying the observed trends in river flow and climate
time series (Peters et al. 2013; Hassan et al. 2021). However,
the research gap on how coherent the cycles and quasi-cycles
of river flow and climate of ARB are and how much they
lead/lag from each other over time and frequency has not yet
been filled in the literature.

b. Main contributions

Possible interactions between climate, land cover, and river
flow have been studied for three subregions of the ARB,
namely the upper, middle, and lower ARB, in several studies

(Dibike et al. 2018; Zaghloul et al. 2022; Dastour et al. 2022).
In the present study, three major gauging stations along the
Athabasca River with long-term historical measurements
were selected, namely those at Hinton, at Athabasca, and be-
low Fort McMurray. Then three new subregions were care-
fully delineated which were different from the subregions in
earlier studies mentioned above. The new subregions were
delineated according to terrain specific, soil, and LULC types
to precisely represent the river flows measured at the three
stations mentioned above. The remote sensing–derived
LULC measurements for 2001–20 are first analyzed to show
how the land cover dynamics may have impacted the river
flow over the past two decades. Then, from the gridded hy-
brid climate dataset, the temperature and precipitation
within the new three subregions are calculated by taking
their average. Next, the climate and river flow anomalies
with respect to a baseline period 1961–90 were derived to
show how climate and river flow changed over time with
respect to the baseline. Finally, possible impacts of precip-
itation and temperature change on river flow measured at
the three stations since the 1950s are shown via multivari-
ate regression and the proposed triple cross-wavelet anal-
yses. Note that since there was no river flow gauging
station downstream after Fort McMurray that could pro-
vide long and continuous historical river flow measure-
ments, a part of the ARB in the far lower reach was not
considered. However, the readers are referred to Hebert
(2019) and Peters et al. (2022), who studied the impact of
climate change and human activities on river flow and
aquatic birds after Fort McMurray in the lower ARB that
experienced a quick oil sands development in recent
years. The main contributions of this research are summa-
rized below.

1) A traditional multivariate regression model is applied to
monthly derived river flow, precipitation, and temperature
measurements for the open warm season, cold season, an-
nual period, and each calendar month.

2) A novel triple cross-wavelet analysis technique is pro-
posed for estimating coherency and phase delay between
cycles and quasi-cycles of river flow and climate time
series in the time–frequency domain.

The multivariate regression correlation and wavelet coher-
ency, compared in this research, provide a new insight into
how climate may have impacted the Athabasca River flow in
certain periods. In particular, the triple cross-wavelet analysis
can show in which periods the seasonal cycles of river flow
and climate are significantly coherent and how much they
lead/lag from each other.

2. Materials and methods

a. Study area

The ARB is mostly in the province of Alberta with a
small portion in the province of Saskatchewan, Canada. It
extends from the Columbia Glacier in the Canadian Rocky
Mountains to Lake Athabasca. The drainage area of the
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ARB is approximately 138 000 km2. The upper region or
southern part of the ARB is mountainous with elevations of
approximately 1700–2200 m above mean sea level. The fol-
lowing section of the Athabasca River flows through the
foothills of the Rocky Mountains with a change of topogra-
phy between the mountains and the prairies. The rest of the
ARB lies in the Canadian Prairies in northeast Alberta and
western Saskatchewan (Bawden et al. 2014; Belvederesi
et al. 2020a). The climate within the ARB was described to
have annual average maximum and minimum temperatures
of approximately 6.28 and 25.28C, respectively. Precipita-
tion was reported to be an average of 492 mm annually
(Bawden et al. 2014).

The Athabasca River, inside the ARB, is the largest un-
dammed river in Alberta, Canada. It originates at Columbia
Glacier in Jasper National Park and extends about 1300 km
toward the northeast of the ARB, and flows to Lake Athabasca,
last flowing to the Arctic Ocean (Du et al. 2019). The ARB
was divided into four subregions in this study. The first sub-
region outlet is at Hinton, monitored by the Water Survey
of Canada (WSC) station 07AD002. The second subregion
is between Hinton and Athabasca, and its river outlet is moni-
tored by WSC station 07BE001 at Athabasca. The third sub-
region lies between Athabasca and Fort McMurray, monitored
by WSC station 07DA001 below Fort McMurray. The final
downstream subregion, which lies between Fort McMurray and
Lake Athabasca, is monitored by the WSC station 07DD001 at
Embarras Airport, excluded here due to very limited measure-
ments (Zaghloul et al. 2022). Figure 1 shows a map of the ARB
as well as the subregions and the WSC stations used, where the
background digital elevation model is from the Shuttle Radar
Topography Mission (SRTM) at 30-m spatial resolution, which

is publicly available at https://earthexplorer.usgs.gov/ (Last ac-
cessed on 23 July 2023).

According to the map of Alberta Soil Groups produced by
Alberta Agriculture, Food and Rural Development, the main
soil groups for the first subregion (before S1) are brunisols
and gray luvisols, for the second subregion (between S1 and
S2) are gray luvisols and dark gray chernozemics, and for the
third subregion (between S2 and S3) are gray luvisols and or-
ganics. Brunisols, occurring in the mountainous region, are
thin soils (2–15 cm) with a limited frost-free period, and gen-
erally not suitable for agriculture. Gray luvisols occur in most
parts of the region with mixed forests or in transition zones be-
tween grassland and forests where their agricultural capability
depends on the amount of organic matter. Dark gray cherno-
zemic soils are formed during transitions between grasslands
and forests, and are most suitable for agriculture. Organic
soils, also known as peat or fen soils, occurring in wetlands, re-
ceive water and nutrients from mineral-rich groundwater or
surface water (Frelich and Reich 2010; Lavkulich and Arocena
2011; Hwang et al. 2023).

b. Datasets and preprocessing

In this study, the hybrid climate dataset provided by
Alberta Environment and Parks is utilized. This dataset is
based on a framework, the Reference Reliability Evalua-
tion System (REFRES), that systematically ranks multiple
climate datasets including station-based, multisource, and
reanalysis-based datasets to produce the hybrid climate da-
taset for the ARB. Eum and Gupta (2019) showed that
REFRES hybrid climate dataset provides the best representa-
tion of historical climate in the ARB compared to other avail-
able datasets. The climate measurements are daily with spatial

FIG. 1. Map of the ARB showing the boundaries of the subregions and the locations of the
gauging stations.
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resolution of 0.18 3 0.18 or ;10 km within the ARB and avail-
able for the period of 1950–2019. The reader is referred to
Eum and Gupta (2019) for more details.

The river flow measurements (m3 s21) used in this study
are obtained from the WSC database. The gauging stations
selected in this study were chosen based on the availability of
55 years or more of continuous, year-round river flow meas-
urements and situated at strategic locations within the ARB.

Herein, for all the multivariate regression and wavelet anal-
yses, only the monthly accumulated precipitation, monthly av-
eraged temperature, and river flow are considered. In other
words, since the focus of this study is to investigate the corre-
lation between river flow and climate in monthly scales, for
each subregion, the daily river flows and daily temperatures in
each month were averaged to obtain river flow and tempera-
ture time series with a sampling rate of 12 observations per
year. Likewise, the sum of daily precipitations in each month
was calculated to obtain the precipitation time series for each
subregion. On the other hand, for the anomaly calculation,
the annual accumulated precipitation, annual average temper-
ature, and river flow are considered.

The annual LULC images are downloaded from the United
States Geological Survey (USGS; https://earthexplorer.usgs.
gov/). The images are obtained from Terra and Aqua Moder-
ate Resolution Imaging Spectroradiometer (MODIS), namely
MCD12Q1-V6, available only for the period 2001–19 at the
time when this research was conducted. The MCD12Q1-V6
images are produced from supervised classifications of MODIS
Terra and Aqua reflectance data that went through some ad-
ditional postprocessing to improve the total of 11 LULC
classes. The LULC images are yearly and have spatial reso-
lution of 500 m.

c. Climate and flow anomalies procedure

Anomalies in yearly accumulated precipitation, yearly av-
eraged temperature, and river flow were calculated by sub-
tracting the baseline average (1961–90) from the yearly
measurements. More precisely, the average of all grid values
for each subregion for the climate was first calculated, then
the yearly averaged temperature and yearly accumulated
precipitation were calculated, and finally, the averages of
yearly averaged temperatures and accumulated precipitation
for period 1961–90 were subtracted from the yearly measure-
ments. For the river flow, the measurements (m3 s21) re-
corded at stations S1, S2, and S3 (the outlets of the three
subregions) were used to calculate the anomalies with the
same baseline period. Thirty-year-long baseline periods have
been used in many studies for anomaly calculations (Eum et al.
2016; Lyra et al. 2016). The 30-yr period is a standard period
recommended by the Intergovernmental Panel on Climate
Change (IPCC) that can capture a range of climate variations,
such as severe drought, floods, and cool and warm seasons.
The World Meteorological Organization (WMO) standard
baseline period 1961–90 suggested in Carter et al. (1994) is
chosen herein. In this research, this baseline period is the old-
est period when the river flow measurements for all the three

stations are available, and so one can study recent changes in
climate and river flow with respect to the baseline.

d. Multivariate regression

Multivariate regression was performed on the river flow
and climate measurements, where the temperature and pre-
cipitation were independent variables and river flow was the
dependent variable. The formula used for regression was

flow 5 b0 1 b1 3 P 1 b2 3 Tavg 1 b3 3 P 3 Tavg, (1)

where Tavg is monthly average temperature, and P is monthly
accumulated precipitation. The coefficients b0, b1, b2, and b3
were estimated by the method of least squares (Draper and
Smith 1981; Ghaderpour et al. 2021). These coefficients, along
with the r value and p value were calculated for each regres-
sion model using the “regress” command in MATLAB; see
Chatterjee and Hadi (1986) for more details. The measure-
ments were chronologically classified and subdivided, where
regression was performed on each subset separately. These
subsets were monthly (e.g., only January between 1958 and
2020), all the months in the open warm season, cold season,
and whole year. The open warm season included the months
of May–October in station S1 and April–October in stations
S2 and S3, while the cold season average included the rest of
the year (Zaghloul et al. 2022).

e. LSCWA-3

Least squares cross-wavelet analysis (LSCWA) was proposed
for estimating the coherency between wavelike components of
two time series (Ghaderpour 2021a; Ghaderpour et al. 2018).
The advantages of LSCWA over the traditional cross-wavelet
transform and wavelet coherence (Torrence and Compo 1998)
include finer time-frequency resolution, direct processing of
time series with different sampling rates or missing values, and
accounting for measurement errors.

Least squares triple cross-wavelet analysis (LSCWA-3) is
like the LSCWA proposed herein for analyzing three time
series together. In other words, the LSCWA-3 is a time–
frequency technique developed for coherency analysis between
the wavelike components of three time series. In the
LSCWA-3, a common time vector is selected first, and then
each time series is segmented according to a selected set of
frequencies. The common time vector may be selected as
the union of the three sets of times in the three time series.
In this study, since all the time series are monthly (their
sampling rate is 12 observations per year) with possibly
some missing values, the common time vectors are also
monthly (in the form of 1/12, 2/12, 3/12, … years). Next, a
spectrogram is estimated for each time series which has
three dimensions, time, frequency, and normalized variance
(Ghaderpour and Pagiatakis 2017). A Gaussian window
function is chosen to produce an optimal time–frequency
resolution spectrogram. The window expands over time as
frequency increases and dilates as frequency decreases. As
the window translates over time, harmonics and other con-
stituents, such as trends, will be fitted to the segments within
the window via the weighted least squares method. This
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process is done as the window translates over time and di-
lates over frequency to estimate a set of least squares spec-
tral peaks, producing a spectrogram (Ghaderpour and
Pagiatakis 2017). Since a common set of times and frequen-
cies are selected for computing a spectrogram for each time
series, the three spectrograms can then be elementwise mul-
tiplied by each other to produce a triple cross-spectrogram
(LSCWS-3). Herein, three spectrograms are multiplied by
each other, namely, the spectrograms of river flow, precipi-
tation, and temperature time series.

Mathematically, to estimate one spectrogram for a given
time series, the following cost function will be minimized for
each segment of the time series.

ck(ti) 5 fk(ti) 2 c0a0(ti) 2 · · · 2 cqaq(ti) 2 cq11 cos(2pvkti)
2 cq12sin(2pvkti), (2)

where ti is a time in the series segment, f(ti) is the measure-
ment at ti (e.g., river flow at ti), and a0, … , aq are the constitu-
ents of known forms. Herein, a0(ti) 5 1 (for all i) is selected
for making the mean of the residual segment zero before esti-
mating the spectrum. Also, since it is shown that the annual
peaks of climate and river flow in this study are coherent,
a1(ti) 5 cos(2pti) and a2(ti) 5 sin(2pti) are selected to calcu-
late the residual cross-spectrogram for detecting other hidden

coherent peaks. Parameters c1, … , cq, cq11, cq12 are un-
knowns and will be estimated by the weighted least squares
method, where the weights are the Gaussian values, and vk is
a cyclic frequency of interest. Since the Gaussian values are
chosen, the measurements toward the center of each segment
will have relatively higher weights than the measurements to-
ward both sides of the segment. This way, the harmonics are
adapted to Morlet wavelet in the least squares sense, generating
an optimal time–frequency resolution spectrogram (Ghaderpour
and Pagiatakis 2017). First, the residual segment is estimated by
minimizing the cost function ck without the harmonics at fre-
quency vk. Thus, the residual is estimated as

rk(ti) 5 fk(ti) 2 ĉ0a0(ti) 2 · · · 2 ĉqaq(ti) , (3)

where the hat symbol means estimated. Then all the unknown
parameters cj in Eq. (2) are estimated for each vk via the
weighted least squares method (Ghaderpour and Pagiatakis
2017). After the estimation of the harmonic coefficients in
Eq. (2), the following equation is derived:

hk(ti) 5 ĉq11 cos(2pvkti) 1 ĉq12 sin(2pvkti) : (4)

The least squares spectral peak at vk is defined as the
weighted inner product of rk and hk divided by the weighted
inner product of rk and rk or the weighted norm of rk, where

FIG. 2. The estimated annual time series of the LULC classes for each subregion of the ARB whose outlet is at (a) Hinton, (b) Athabasca,
and (c) Fort McMurray, and (d) the bar chart showing the averages and standard deviations of the LULC classes, which are also listed in
Table 1. The Sen’s slopes and their p values for each LULC class are listed in Table 1.
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the weights are the same Gaussian values as mentioned
above. The weights can also be adjusted according to mea-
surement errors; that is, the inverse of measurement variance
may be multiplied by the Gaussian value assigned to each
measurement within a segment (Ghaderpour 2021a). For ex-
ample, the daily river flow and temperature measurements
can be converted to monthly measurements by calculating
their averages along with their variances (e.g., the mean and
variance of 31 measurements for January, etc.).

The collection of all the spectral peaks estimated at each
time and each frequency produces a spectrogram. The spec-
tral peaks in the spectrogram have the property that their fre-
quency resolution reduces at larger frequencies while their
time resolution increases and vice versa (Ghaderpour and
Pagiatakis 2017). Herein, the cross multiplication of three
least squares wavelet spectrograms, denoted by LSCWS-3,
presents localized time–frequency peaks in terms of percent-
age variance, where their higher values indicate the higher
coherency between cyclic components of the three time series.

The variance of 100% corresponding to a pair of time and fre-
quency indicates that the local cycles of the three time series in
a small time–frequency neighborhood, centered at the given
pair, are perfectly coherent (no noise). In practice, the percent-
age variance of 15% or higher for peaks in cross-spectrograms
(double-cross) and 5% or higher for peaks in cross-spectrograms
(triple-cross) are considered significant. In this work, for each
time series, the residual spectrogram is obtained by simulta-
neously estimating and removing the annual cycle in each seg-
ment as described by Ghaderpour and Pagiatakis (2017). The
process of estimating and removing the annual cycles is done
for each time series independently, and then the residual
spectrograms of the time series are cross-multiplied to obtain
the residual triple cross-spectrogram (residual LSCWS-3). The
statistical significance of peaks in the cross-spectrograms can be
determined from the normality and statistical independence of
measurements in different time series (Ghaderpour et al. 2018).
In this research, the peaks whose variance are greater than 5%
are also statistically significant at 99% confidence level.

FIG. 3. The temperature and precipitation anomaly bar charts for the three subregions where the baseline period
is 1961–90.

TABLE 1. Mean and standard deviation of the number of pixels corresponding to different LULC classes in the subregions of the
ARB. The other four LULC classes (broadleaf croplands and evergreen broadleaf forests, shrublands, and urban) were insignificant
and are not listed here. The Sen’s slope is in percent area per decade, and the boldface Sen’s slopes are statistically significant at
95% confidence level (p value , 0.05).

LULC class

Hinton (S1) Athabasca (S2) Fort McMurray (S3)

Mean SD Slope p value Mean SD Slope p value Mean SD Slope p value

Water 0.36 0.03 20.03 0.04 1.97 0.01 0.00 0.31 2.17 0.02 20.01 0.15
Grasslands 37.59 0.61 20.22 0.46 13.26 1.13 21.37 0.00 4.45 0.75 0.41 0.14
Grassy woodlands 18.59 1.45 1.02 0.04 33.30 1.77 22.94 0.00 64.72 1.94 22.10 0.02
Deciduous broadleaf forests 0.03 0.00 0.00 0.22 11.58 0.70 1.09 0.00 4.08 0.21 20.01 0.97
Evergreen needleleaf forests 26.22 1.84 21.57 0.00 38.44 1.89 3.28 0.00 23.11 1.96 2.05 0.02
Deciduous needleleaf forests 0.04 0.01 0.01 0.00 1.26 0.34 0.66 0.00 1.35 0.25 0.21 0.02
Nonvegetated lands 17.04 0.48 0.44 0.00 0.04 0.01 0.01 0.00 0.10 0.03 0.04 0.00
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To estimate phase delays between cycles of river flow and
climate, the same procedure is followed as described by
Ghaderpour et al. (2018) for each pair of time series (i.e.,
for river flow and precipitation time series and for river flow
and temperature time series). Mathematically,

sin(2pvkti 1 uk) 5 sin(uk)cos(2pvkti) 1 cos(uk)sin(2pvkti)
(5)

and Eq. (4) yield ĉq11 5 sin(uk) and ĉq12 5 cos(uk), and so
uk for river flow and climate segments can be estimated

(Ghaderpour et al. 2018). For example, if û1k and û2k are the
estimated phases for river flow and precipitation segments,
then ck 5 û1k 2 û2k will be the estimated phase delay between
the corresponding cycles of river flow and precipitation, shown
by arrows in the cross-spectrograms. The phase arrows follow
the trigonometric circle principle (e.g., Dastour et al. 2022). In
addition, the phase can be converted from radians to days us-
ing the following relation: t 5 356.256/(2p) 3 ck/vk, where vk

is in cycles per year.
In this research, the least squares cross-spectrum (LSCS) is

also calculated by multiplying the spectra of the three time

FIG. 5. Multivariate regression results for river flow, precipitation, and temperature. The p values for all the regressions
are less than 0.0001. The estimated regression coefficients are listed in Table 3.

FIG. 4. The river flow anomaly bar charts for the three subregions where the baseline period is 1961–90.
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series. There is no segmentation of the time series when
LSCS is calculated; that is, the harmonics and trends are fitted
to the entire time series only and the time series are decom-
posed into only the frequency domain not into the time–
frequency domain. Ghaderpour et al. (2018) describe the
LSCS for two time series, and herein the algorithm is naturally

extended for three time series to calculate triple cross-spectra
(LSCS-3). In the present work, the antileakage least squares
spectral analysis (ALLSSA) is also applied to the river flow
and climate time series to simultaneously estimate their trend
and harmonic components. The ALLSSA is a robust method
of estimating the gradients in time series with seasonality (see

FIG. 6. The monthly multivariate regression analyses for temperature, precipitation, and river flow. The r and p values of these regressions
are listed in Table 2, and their estimated coefficients are listed in Table 3.
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Ghaderpour et al. 2021). The MATLAB and python software
packages used for estimating season-trend components, spectra,
and spectrograms are publicly available at https://geodesy.noaa.
gov/gps-toolbox/JUST.htm (Ghaderpour 2021b).

3. Results

The percentage coverage of each LULC class was calculated
for each subregion and each year from 2001 to 2020, illustrated
in Fig. 2. Table 1 shows the mean and standard deviations of the
LULC classes. Slopes and their p values for time series shown in
Fig. 2 are estimated via the nonparametric Mann–Kendall (MK)
and Sen’s slope estimator, and the results are listed in Table 1;
see Zaghloul et al. (2022) for the mathematical formula of MK
and Sen’s slope. The first subregion (S1), the mountainous
region, had the highest nonvegetated lands (17% on average).
Figure 2b and Table 1 show a slight increase in evergreen nee-
dleleaf forests (3.28% per decade) and a slight decrease in grassy

woodlands (22.94% per decade). From Fig. 2, grasslands, grassy
woodlands, and evergreen needleleaf forests had the highest
percentage coverage and standard deviation for all the three
subregions; however, the standard deviations were not signifi-
cant. From Table 1, evergreen needleleaf forests in S1 have
been decreasing with a rate of21.57% per decade while nonve-
getated lands have been increasing by 0.44% per decade since
2001 at 99% confidence level. The significant amount of nonve-
getated lands and grasslands in the S1 subregion contributed to
warming of this subregion and gradual glacier melts, which re-
sulted in a gradual increase in river flow at S1 (Zaghloul et al.
2022).

The annual climate and river flow anomaly charts are dis-
played in Figs. 3 and 4, respectively. All three subregions
show a significant temperature increase and precipitation
decrease with respect to the baseline since 1991. Each sub-
region is shown by its representative hydrometric station
(i.e., S1, S2, S3).

The multivariate regression results for the three sub-
regions are illustrated in Fig. 5. The open warm season for
all the three subregions shows a significantly higher correla-
tion than the cold season. The highest correlation of 0.87
was for the entire monthly derived measurements (annual)
corresponding to the subregion between Hinton and Atha-
basca (i.e., between S1 and S2). Note that the data points
shown in the bottom panel of Fig. 5 (annual) are the total
data points for the open warm season and cold season
shown on the top two panels. In other words, for the annual
panel, the multivariate regression was done on the entire
monthly measurements. Note that each data point shown in
Figs. 5 and 6 represents a triple value (temperature, precipi-
tation, flow) for a particular month. Note that the triples
were considered wherever river flow was available; that is,
no gap-filling method was applied.

Figure 6 shows the multivariate regression results for
each month separately, and Table 2 lists the correlation r
and p values for regression results of each month. Table 3

TABLE 2. The r and p values of the multivariate regression
results are shown in Fig. 6. The boldface r values are statistically
significant at a 99% confidence level.

Month

S1 S2 S3

r p value r p value r p value

Jan 0.27 0.256 0.25 0.264 0.10 0.898
Feb 0.34 0.082 0.22 0.391 0.19 0.537
Mar 0.36 0.061 0.41 0.011 0.33 0.088
Apr 0.42 0.017 0.32 0.081 0.38 0.035
May 0.78 0.000 0.21 0.430 0.15 0.730
Jun 0.51 0.001 0.48 0.001 0.32 0.099
Jul 0.30 0.168 0.54 0.000 0.30 0.139
Aug 0.63 0.000 0.53 0.000 0.39 0.024
Sep 0.48 0.003 0.49 0.001 0.44 0.005
Oct 0.27 0.258 0.15 0.697 0.21 0.436
Nov 0.30 0.180 0.11 0.858 0.21 0.445
Dec 0.28 0.210 0.14 0.759 0.20 0.497

TABLE 3. The estimated coefficients of the multivariate regression using Eq. (1). Note that b0, b1, b2, and b3 are the coefficients of
intercept, precipitation, temperature, and precipitation multiplied by temperature, respectively.

S1 S2 S3

Date b0 b1 b2 b3 b0 b1 b2 b3 b0 b1 b2 b3

Jan 41.0 0.0 0.3 0.0 116.6 20.1 1.2 0.0 126.9 1.6 22.9 0.1
Feb 38.3 0.0 0.6 0.0 113.5 20.7 2.3 20.1 178.5 20.1 2.2 20.1
Mar 44.7 20.1 2.0 0.0 123.8 20.2 4.0 0.0 204.9 21.1 3.2 0.0
Apr 44.9 0.1 20.1 0.1 294.6 20.6 214.4 1.4 406.7 1.4 37.7 20.2
May 49.1 20.8 21.5 0.4 606.7 23.2 24.0 0.6 729.6 1.2 37.8 20.2
Jun 2363.9 10.1 100.7 21.2 80.2 7.7 41.9 20.3 759.5 2.3 18.7 0.1
Jul 409.4 20.8 0.1 0.2 2216.3 13.4 46.5 20.6 1073.8 8.4 211.1 20.2
Aug 2122.6 2.6 35.1 20.1 2464.7 8.7 58.3 20.3 341.8 4.2 22.3 0.0
Sep 72.3 1.2 12.0 0.0 199.4 4.2 10.0 20.1 968.3 25.0 248.4 1.0
Oct 111.7 0.1 13.5 20.2 233.3 1.8 19.9 20.5 379.2 5.0 28.9 20.9
Nov 52.0 0.3 21.0 0.0 156.1 1.1 21.5 0.1 362.1 23.5 7.8 20.4
Dec 56.2 20.1 1.0 0.0 123.4 20.9 0.1 0.0 274.9 22.3 5.0 20.1
Cold season 43.1 0.1 0.3 0.0 126.5 0.6 2.2 0.0 231.9 1.3 5.6 20.1
Warm season 51.3 1.0 22.7 0.1 195.9 2.8 15.0 0.2 422.1 2.5 26.8 0.2
Annual 90.5 1.5 10.7 0.1 181.8 3.7 11.5 0.2 401.4 4.5 19.2 0.1
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shows the estimated multivariate regression coefficients
that are used to plot the regression surfaces in Figs. 5 and 6.
One can observe that for the mountainous subregion with
outlet S1, January and May show the lowest (0.27) and
highest (0.78) correlations, respectively. Moreover, river
flow at S1 showed no correlation with precipitation during
January and February as seen in Table 3. On the other
hand, precipitation and temperature were positively corre-
lated with river flow in June for S1. For the subregion be-
tween S1 and S2, the lowest and highest correlations were
for November (0.11) and July (0.54), respectively. Fur-
thermore, the subregion between S2 and S3 showed the
lowest (0.10) and highest (0.44) correlation for January
and September, respectively. Generally, all the subregions
showed relatively higher positive correlations with precip-
itation and temperature during the open warm season
than during the cold season (see Fig. 5 and Table 3). Note
that the r values in Fig. 5 and Table 2 are calculated for
the entire mathematical model given by Eq. (1), not to be
confused with the coefficients in Table 3.

Other parameters, such as evapotranspiration, solar radia-
tion, air pressure, and wind speed could also be modeled in
multivariate regression; however, their contributions are either

insignificant or highly correlated with temperature, precipita-
tion, and land cover that are already utilized in this study. In
fact, in various studies, temperature and precipitation were
found to be the major climatic factors affecting river flow as
determined by statistical methods and tools, such as principal
component analysis and SWAT (Lei et al. 2021; Zaghloul et al.
2022; Si et al. 2023).

To further investigate the temporal relationships between
river flow and climate, the LSCSA-3 is applied to the time se-
ries of each subregion (i.e., the time series whose values are il-
lustrated in the bottom panel of Fig. 5), and the results are
shown in Figs. 7–9. Note that the time series are monthly (i.e.,
12 observations per year). The daily river flows and tempera-
tures for each month were averaged to obtain monthly river
flow and temperature time series. Moreover, the sum of daily
precipitation for each month was calculated to obtain the pre-
cipitation time series. The residual LSCWS-3 is obtained after
simultaneously estimating and removing the annual cycle
from river flow, precipitation, and temperature time series.
The annual cycles of the climate and river flow measurements
are coherent for all the three subregions; however, the lowest
annual coherency of 4.7% is estimated for S1, while the an-
nual coherencies of 30.5% and 33.7% are estimated for S2

FIG. 7. The triple cross-spectra and triple cross-spectrograms for river flow, precipitation, and
temperature time series in the S1 subregion (Hinton). The spectral peaks whose variance is
greater than 5% are significant at the 99% confidence level. In the cross-spectrograms, the signif-
icant peaks are shown inside the closed curves in black. The white arrows show phase delays be-
tween river flow and precipitation cycles while the red arrows show phase delays between river
flow and temperature cycles. The arrows pointing to the right and left mean in phase and out of
phase, respectively. The arrows pointing up and down show river flow cycles lead and lag, re-
spectively (also see Fig. 10). The linear trend for each time series is shown by the straight black
lines whose intercepts and slopes and their errors are shown in Table 4. Note that ALLSSA has
estimated these trends simultaneously with harmonics at 99% confidence level.
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and S3, respectively. The LSCWS-3 in Fig. 7 shows that the
coherency between the annual cycles of the climate and
river flow has increased since 1991, particularly in 2005 and
2015, because of the more significant annual cycles in the pre-
cipitation time series since 1991. Next, by simultaneously

estimating and removing the annual cycles in the climate and
river flow time series segments, the residual LSCWS-3 is ob-
tained. Interestingly, the results show coherent semiannual
cycles (2 cycles per year or about 183 days) most of the time,
while higher seasonal cycles occasionally show significant

FIG. 9. As in Fig. 7, but for the S3 subregion (Fort McMurray).

FIG. 8. As in Fig. 7, but for the S2 subregion (Athabasca).
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coherency over time (see the cross-spectrograms illustrated
in the bottom panels of Figs. 7–9). For example, in Fig. 8, a
relatively higher coherency can be observed for the semian-
nual cycles between 1990 and 2000 with more than 15% in
1990 (see the peaks inside the closed black curves). Note that
as recommended by Torrence and Compo (1998) and Gha-
derpour (2021a,b), six cycles of harmonics are fitted to each
segment for each frequency to generate the spectrograms.
This means at 1 cycle per year, 6 years of monthly measure-
ments are used whereas at 2 cycles per year, 3 years of
monthly measurements are used for each segment, and so on.
Since the Gaussian weights are used (i.e., Morlet wavelets in
the least squares sense), the measurements within the middle
years of each segment get relatively higher weights. For ex-
ample, higher weights are assigned to measurements in year
2001 for a segment that starts from 2000 and ends at the end
of 2002 at 2 cycles per year, etc.

Figures 7–9 also show the phase delay results between the
cycles of river flow and precipitation (white arrows) and river
flow and temperature (red arrows). To better understand how
to interpret the arrows, the estimated annual cycles between
river flow and climate for S1, centered in 2013, are displayed
in Fig. 10, showing that the precipitation leads river flow by
one month while the temperature lags river flow by one week.
The magnified section in LSCWS-3 in Fig. 7 demonstrates the
corresponding triple spectra for the segments of the three
time series whose normalized annual cycles are illustrated in
Fig. 10. Note that for brevity and visualization purposes, the
phase delay results (arrows) are only displayed for the most
significant triple spectral peaks whose values are largest
within a small neighborhood.

The ALLSSA season-trend estimates are listed in Table 4,
showing that the river flows at S2 and S3 were gradually
decreasing at a significant rate while the river flow at S1 was
increasing insignificantly over the past six decades. The pre-
cipitation had a deceasing trend while the temperature had an
increasing trend over the past six decades for all the three
subregions. Table 4 also shows the amplitudes (along with
their standard errors) of the seasonal cycles estimated simul-
taneously with the trend.

Table 5 shows the percentage coherency between river flow
and precipitation and between river flow and temperature
time series using LSCSA. From this table, the annual cycle of

river flow is more coherent with the one in temperature than
the one in precipitation for all the three subregions.

4. Discussion

Table 6 shows the river slope (Cohen et al. 2018) and most
dominant soil groups and land cover types of the three subre-
gions. For each subregion, the river slope was computed as
the elevation difference between the hydrometric stations
(from inlet to outlet) divided by the river length between the
stations, that is, from near Jasper to Hinton (S1), from Hinton
to Athabasca (S2), and from Athabasca to Fort McMurray
(S3). The river slope is expressed by percentage in Table 6.
For example, 0.13% for S1 means an elevation change of
1.3 m per 1-km distance along the river. To estimate the
river slopes, the elevations of Athabasca River near Jasper
(;1059 m), at Hinton (;954 m), at Athabasca (;516 m), and
below Fort McMurray (;237 m) were used (Zaghloul et al.
2022). The river length for each subregion was estimated us-
ing Google Maps, which agrees with the results illustrated in
Fig. 7 in Hwang et al. (2023).

As demonstrated in Fig. 2 and Table 6, the first subregion
(before S1) has the highest nonvegetated land (17%) with
about 38% grassland coverage and a relatively smaller area
and steeper slope compared to the rest of the ARB. The cor-
relation of 0.78 in May could then be explained as a more
straightforward relationship between the warming (snowpack
melting), precipitation, and runoff, which agrees with the re-
sults by Zhang et al. (2001), Burn and Elnur (2002), and
Zaghloul et al. (2022). The subregion between S1 and S2 (or
simply S2) is mostly covered by grassy woodlands (33%) and
evergreen needleleaf forests (38%). Furthermore, the soil
group of this subregion (gray luvisols and dark gray chernoze-
mics) could potentially cause a delay between climate and
runoff and may explain the low correlation of 0.54 in July (see
Tables 2 and 6). The subregion between S2 and S3 (or simply
S3) has about 65% grassy woodlands and 23% evergreen nee-
dle forests, deviating about 2% since 2001, with a relatively
wider area and flatter terrain. Considering its soil group (gray
luvisols and organics), agricultural and other human activities,
the relatively lower correlation between climate and river flow
could be explained (with a maximum of 0.44 in September)
which agrees with the results of other similar studies (e.g.,

FIG. 10. An example of phase delay analysis for S1 (Hinton) from 2012 to 2015, shown in Fig. 7.
The estimated annual cycles are normalized to aid phase delay visualization.
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Wang et al. 2018). From the results shown in Tables 3 and 4
and Fig. 5, a gradual decrease in precipitation and increase
in temperature are expected to decrease the river flow in
the ARB during the open warm season, which agrees with
the findings of Morales-Marı́n et al. (2019).

Figure 3 showed that the temperature and precipitation
anomalies were mostly positive and negative with respect
to the baseline during the past three decades, respectively.
Figure 4 also showed that S1 mostly had positive river flow
anomalies while S2 and S3 mostly had negative anomalies
during the past three decades. This may be explained by
gradual glaciers and snowpack melting in the mountainous
region (before S1) due to temperature increase and albedo
decrease in recent decades, contributing to runoff, while the
other two subregions have more vegetation/forest coverage
and are flatter as observed in Figs. 1 and 2 and Table 6
(Pradhananga and Pomeroy 2022; Zaghloul et al. 2022).

In the present study, the monthly derived measurements
were separated, and then the multivariate regression was per-
formed on the monthly measurements (e.g., July 1950, July
1951, … , July 2019). Furthermore, the annual, open warm
season, and cold season regression were on the monthly meas-
urements. The poor correlation between climate and river
flow during the cold months could be explained by several
reasons, such as ice formation and measurement errors, caus-
ing an irregular pattern in data clouds, as seen in Figs. 5 and 6
(Andrishak and Hicks 2011; Katopodis and Ghamry 2007).
Furthermore, the air temperature variations are unlikely to in-
fluence the river flow if it remains below zero. From Table 2,
the first subregion (before S1) shows a higher correlation than
the other two subregions during cold months which may be ex-
plained by higher elevation, snowpacks and glacier melt, which
contribute to river flow with some delays (May shows the high-
est correlation for S1). Ghaderpour et al. (2021) employed the
LSCWA and showed that the annual and seasonal cycles of the
precipitation generally led to the ones in the river flow, meaning
there was a time delay (about a few weeks) between precipita-
tion and river flow cycles. Neglecting such time delay in the re-
gression could slightly decrease the Pearson correlation.

As illustrated in Figs. 7–9, the triple cross-spectra and cross-
spectrograms of river flow, precipitation, and temperature
showed significant coherency between their annual cycles,
where the most annual coherency was observed for S2 and S3
subregions. For the mountainous subregion S1, the annual co-
herency was more significant since 1991. The main reason for
the poor coherency before 1991 was an insignificant and discon-
tinuous annual cycle in the precipitation time series that de-
creased the overall annual coherency, although both river flow
and temperature time series had significant and continuous an-
nual cycles. Recent land cover changes in the S1 subregion
could have also played a role in annual cycles of precipitation
since 1991. Another possible reason for higher annual coher-
ency since 1991 as seen in Fig. 7 is gradual regional warming
(see Table 4).

The white arrows in Fig. 7 show that the precipitation an-
nual and semiannual cycles led the ones in river flow mainly
since 1991 while the temperature cycles were almost in phase
with the river flow cycles. This could be explained by the fact
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that in mountainous regions, the precipitation is usually in the
form of snow, causing some delay in contributing to runoff
during the snow melting process. Furthermore, the forest cover
was significantly decreasing while the nonvegetated lands were
increasing in the recent decades in S1 (see Table 1), which
have reduced the physical obstructions to surface flow. On the
other hand, Table 1 showed that forests were significantly in-
creasing in recent decades in the relatively flatter subregions
S2 and S3. This together with gradual warming, evapotranspi-
ration, and anthropogenic activities (Lima and Wrona 2019)
resulted in different phase delay patterns as illustrated by
white and red arrows in Figs. 8 and 9. Furthermore, Autio et al.
(2020) and Hwang et al. (2023) showed that spatial distribu-
tion of groundwater and surface water exchange can be
highly impacted by peat soil characteristics, the main soils
of subregion S3. As shown in Table 5, the precipitation
cycles were much more coherent with river flow cycles in
S2 and S3 than in S1, justifying why there is higher annual
and semiannual coherency in triple cross-spectra and cross-
spectrograms shown in Figs. 8 and 9. Note that the white
arrows that are pointing toward north in the triple cross-
spectrograms indicate that precipitation cycles lag river
flow cycles, which may be explained by excessive evapora-
tion and infiltration capacity of soil, plant root water ab-
sorption, and water withdrawals (Lima and Wrona 2019;
Zaghloul et al. 2022; Hwang et al. 2023).

The hybrid precipitation measurements utilized in this re-
search carried the information of snow and rain together, and
so it was not possible to conduct more detailed analysis
of rainfall versus snowfall. Exploring other potential meteo-
rological datasets for this purpose is subject to future work.
Since enough harmonic cycles were fitted to time series
segments, the significant semiannual coherent peaks in

RLSCWS-3 in Figs. 8 and 9 likely have physical meanings
(i.e., changing climate and their direct impact on river flow).
For example, Fig. 9c in Ghaderpour et al. (2021) shows that
the spectrogram of river flow at Athabasca (S2) has signifi-
cant semiannual peaks between 1990 and 2000, and Fig. 8 in
the present study shows that the climate time series (in par-
ticular, precipitation) had significant semiannual cycles be-
tween 1990 and 2000. It would be interesting to investigate
the land cover changes between 1990 and 2000 to justify this
coherency, unfortunately the MODIS images utilized here
were available only after 2000.

Two of the main factors for gradual river flow decrease in
ARB were gradual warming and declining precipitation as
shown in Table 4 and Fig. 4. In addition, anthropogenic activi-
ties have also had an impact on river flow decrease, particu-
larly in subregions S2 and S3, which experienced rapid
development of urban, agriculture, and industry during the
past few decades (e.g., pulp and paper mills and agriculture in
S2 and oil sand mining in S3 and the lower ARB). Water
withdrawals for municipal and industrial use have been signif-
icantly increased in recent decades (Lima and Wrona 2019).
From Table 4 and Fig. 3, the precipitation in S1 has been de-
creasing at a faster rate (20.22 mm yr21), which could likely
be due to the recent land cover change in S1; that is, forests
have been replaced by nonvegetated lands due to wildfire
and/or deforestation during the past few decades (see Table 1
herein; Mahmood et al. 2010; Zaghloul et al. 2022).

Continuous monitoring of river flow is necessary for proper
water management and performing more sustainable policies.
However, these tasks are very challenging, particularly for
cold climate regions like the ARB (Belvederesi et al. 2020b,
2022). Through a flow simulation via a hydrologic model
based on the recent Coupled Model Intercomparison Project

TABLE 5. The percentage coherency between river flow and climate for the three ARB regions. All the values are statistically
significant at 99% confidence level.

Subregion

River flow and
precipitation annual

coherency

River flow and
temperature annual

coherency

River flow and
precipitation

semiannual coherency

River flow and
temperature

semiannual coherency

S1 5.1% 64.8% 3.0% 5.8%
S2 33.4% 62.1% 6.1% 1.8%
S3 36.0% 64.5% 4.7% 1.8%

TABLE 6. River slope and most dominant soil groups and land cover types of the ARB subregions. The upward and downward
arrows indicate that the specific land cover has been increasing and decreasing since 2001, respectively (see Table 1).

Subregion River slope (%) Soil group Dominant land cover type (%)

S1 0.13 Brunisols and gray luvisols Grasslands 37.6 _
Grassy woodlands 18.6 ↑
Evergreen needleleaf forests 26.2 _
Nonvegetated land 17.0 ↑

S2 0.09 Gray luvisols and dark gray chernozemics Grasslands 13.3 _
Grassy woodlands 33.3 _
Deciduous broadleaf forests 11.6 ↑
Evergreen needleleaf forests 38.4 ↑

S3 0.07 Gray luvisols and organics Grassy woodlands 64.7 _
Evergreen needleleaf forests 23.1 ↑
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(CMIP5), Dibike et al. (2019) predicted the river flow of the
Athabasca River. They predicted an increase in river flow
during the winter and spring but with a decline in the summer
and early fall and with an overall increase, particularly at low-
frequency peaks. However, their forecasting results were
highly dependent on the climate model and streamflow meas-
urements used for simulation. There are only a few stations
along the Athabasca River that provide long-term historical
measurements. Many of the gauging stations in the ARB only
provide seasonal measurements and do not have a long his-
tory. In this research, the poor correlations between river flow
and climate during the cold months (Table 2) are an indicator
of the forecasting challenge. Since the precipitation shows ir-
regular annual and seasonal patterns, especially in the moun-
tainous subregion, its direct use for river flow forecasting can
be a very difficult task. The interannual river flow variation
can be estimated using several decades of measurements that
can be used for long-term forecasting. For example, Chen and
Grasby (2014) showed that the long-term trend in Athabasca
River flow had a significant relationship with the Pacific de-
cadal oscillation. In other words, the overall decreasing trend
in Athabasca River flow since 1960, reported in many publica-
tions, could be the down limb part of a long periodic cycle
(over a century). Finally, the LSCWA-3 provided another in-
sight into how climate and river flow are dependent over time
and frequency; that is, the triple cross-spectrograms showed
that the coherency between climate and flow cycles changed
over time, which may also be useful for forecasting applica-
tions (Ghaderpour et al. 2021).

5. Conclusions

In this work, a robust triple cross-wavelet analysis was pro-
posed based on the least squares principle and was applied to
monthly climate and river flow time series in the ARB to in-
vestigate their possible relationships in the time–frequency
domain. This work is summarized as follows.

Materials: 1) Monthly resampled REFRES hybrid climate
data provided by the government of Alberta since 1950 at
10-km spatial resolution, 2) monthly resampled river flow
time series by WSC for three hydrometric stations S1, S2, and
S3 since 1962, 1956, and 1958, respectively, and 3) annual
MODIS land cover imagery since 2001 at 500-m resolution.

Methods: A multivariate regression analysis and new triple
cross-spectral and cross-wavelet analyses were applied to river
flow, precipitation, and temperature time series for three sub-
regions of the ARB, labeled as S1, S2, and S3. Long-term trends
in the climate and river flow for each subregion were also estimated
by a robust season-trend fit model, namely ALLSSA. In addition,
annual climate and river flow anomalies were also calculated.

Hydrologic findings: It was shown that the mountainous
subregion of the ARB (Hinton: S1) had a higher correlation
between climate and river flow than the other two subregions,
particularly in May (0.78). The lowest correlations were found
during the cold months. The correlations between climate and
river flow were found to be significantly dependent on various
factors, such as specific soil groups, topography, and land
cover characteristics. The triple cross-spectrograms (LSCWS-3)

showed that the annual cycles of the river flow, precipitation,
and temperature were significantly coherent, where the most
and the least stable annual coherencies were found for S3
(33.7%) and S1 (4.7%) subregions. The semiannual and other
intra-annual cycles of the river flow and climate time series
were also coherent in certain periods. The annual and semian-
nual cycles of the precipitation generally led the ones in river
flow mainly in S1 followed by S2 since 1991.

Advantages and limitations: Multivariate regression, LSCSA-3,
and LSCWA-3 provided useful information. The LSCWA-3
estimated the coherency in the time–frequency domain, which
provided more details as compared to the LSCSA-3 that is
only in the frequency domain. Unlike traditional multivariate
regression, LSCWA-3 showed how the climate and river flow
cycles were coherent over time and how much they led/lagged
from each other. Since LSCSA-3 and LSCWA-3 are based on
the least squares principle, they can handle the time series
with missing values and/or different sampling rates without
any need for time alignment. The limitations of this research
include a lack of long-term river flow measurements, a limited
number of gauging stations, and a short period for LULC im-
ages (20 years) to create a more sophisticated spatiotemporal
network for a better understanding of such relationships. The
correlation and coherency between river flow and climate
were shown at monthly scales to establish comparisons be-
tween multivariate regressions and triple-cross spectra and
spectrograms. However, similar analyses can be performed on
daily time series to investigate changes at higher-frequency
cycles of climate and river flow. Unfortunately, there was no
further information about industrial and agricultural water
withdrawals across the ARB to investigate other possible
causes of trend change in river flow more rigorously.

It is hoped that the methods and results presented here can
further help scientists and responsible authorities to make
proper decisions for water management. Continuous ground
and remote sensing data acquisitions could potentially help
scientists to better understand the hydrological characteristics
of the ARB along with their triggering factors.
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