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Abstract: Forest fires cause extensive damage to ecosystems, biodiversity, and human property, posing
significant challenges for emergency response and resource management. The accurate and timely
delineation of forest fire perimeters is crucial for mitigating these impacts. In this study, methods
for delineating forest fire perimeters using near-real-time (NRT) remote sensing data are evaluated.
Specifically, the performance of various algorithms—buffer, concave, convex, and combination
methods—using VIIRS and MODIS datasets is assessed. It was found that increasing concave «
values improves the matching percentage with reference areas but also increases the commission error
(CE), indicating overestimation. The results demonstrate that combination methods generally achieve
higher matching percentages, but also higher CEs. These findings highlight the trade-off between
improved perimeter accuracy and the risk of overestimation. The insights gained are significant for
optimizing sensor data alignment techniques, thereby enhancing rapid response, resource allocation,
and evacuation planning in fire management. This research is the first to employ multiple algorithms
in both individual and synergistic approaches with NRT or ultra-real-time (URT) active fire data,
providing a critical foundation for future studies aimed at improving the accuracy and timeliness of
forest fire perimeter assessments. Such advancements are essential for effective disaster management
and mitigation strategies.

Keywords: thermal anomaly data; satellite imagery; VIIRS; MODIS; concave o« values; matching
percentage; commission error; buffer method; convex method

1. Introduction

Forest fires cause widespread destruction to natural ecosystems, human life, and
property globally. Recent data indicate that forest fires now result in an average of three
million more hectares of tree cover loss per year compared to 2001, accounting for over
one-quarter of all tree cover loss over the past two decades [1]. Annually, an average of
more than 420 million hectares (Mha) of forest are burned globally [2,3], and the frequency
and intensity of these fires have been increasing in recent times [4,5]. The escalation in both
the frequency and intensity of these fires is alarming, with climate change, and particularly
global warming, playing a significant role [6,7]. However, human activities also contribute
substantially to this destruction [6,7]. The economic toll is staggering, with an average
annual loss of USD 2.4 billion between 2002 and 2011 [8]. Significant carbon emissions
are another concern; for instance, the 1997 Indonesian wildfires released approximately
13-40% of average annual global carbon emissions [9]. The health implications are equally
concerning, with smoke from fires exacerbating respiratory and cardiovascular conditions,
leading to coughing, breathing difficulties, and eye irritation [10]. Moreover, the human
cost is profound, with large fires resulting in numerous fatalities, including to firefighters.
For instance, between 1994 and 2004, the United States saw 1144 firefighters lose their
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lives in the line of duty [11]. The 2011 Slave Lake fire in Alberta, Canada, serves as a stark
reminder of the potential for extensive damage to human settlements, with 40% of the
town destroyed, including 454 homes and key municipal buildings, culminating in costs
upwards of CAD 700 million [12,13].

In Canada, the trend of increasing forest fire occurrences is a pressing concern [6].
The Canadian Interagency Forest Fire Centre (CIFFC) reported a record-breaking year
in 2023, with approximately 17.2 million hectares of forest affected by 7131 fire events,
surpassing the previous record set in 1989 [14]. In the same year, Alberta experienced
about 2.22 million hectares of forest fires, while the Northwest Territories faced an even
larger area of 4.16 million hectares [14]. Given the severity and extent of the damage, it is
crucial to accurately measure and monitor forest fire locations and sizes [7,15]. However,
the timeliness of official data, such as fire perimeter polygons, remains a challenge, as they
are typically made publicly available by the government only at the end of the year or
before the onset of the subsequent fire season [16]. This delay hinders early preparation
and mitigation efforts, underscoring the need for more research into assessing active forest
fire perimeters to enhance fire management and reduce the hazards and severity of forest
fires [17].

The advent of Earth Observation (EO) technology has revolutionized the ability to
monitor the Earth, offering data from coarse to high spatial resolution and rapid temporal
frequency [15]. Active fire products, which detect thermal anomalies, are a critical compo-
nent of this technology. They serve operational needs such as rapid responses, resource
allocation, and evacuation, aiding fire management and firefighting agencies in managing
and mitigating the impacts of active forest fires [18,19]. Recent advancements have sig-
nificantly reduced data latency, providing both global and regional coverage, particularly
for the United States and Canada [19]. These active fire products are categorized based
on their latency into ultra real-time (URT), real-time (RT), and near real-time (NRT) [20].
The National Aeronautics and Space Administration’s (NASA) Earth Observing System
Data and Information System (EOSDIS) defines URT data as those available within 60 s
post-satellite observation [19]. RT data, on the other hand, are available within 60 min,
typically around 20-30 min, for the US and Canada. Once URT/RT data surpass 6 h in
age, they are superseded by NRT data, which are globally accessible within 3 h of satellite
observation [20].

The immediacy of URT/RT data is paramount for the early delineation of active fire
perimeters, making it indispensable for operational use by fire management and firefighting
agencies in Canada. This underscores the need for ongoing research to evaluate the efficacy
of various algorithms, including combined approaches, for calculating forest fire perimeters.
Such research is vital for enhancing rapid response capabilities and improving the overall
effectiveness of fire management strategies.

While existing studies have explored forest fire perimeters using individual [16,21-26]
or multiple algorithms [27], such as buffer [24-26], concave hull with an alfa shape [27],
and convex hull algorithms [16,22,23], there remains a gap in comprehensive assessments.
Notably, only a few studies have utilized both Moderate Resolution Imaging Spectro-
radiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) active fire
data [16,21,22], while a few studies have used single MODIS [24] or VIIRS [23,25,27]. The
Canadian Wildland Fire Information System (CWEFIS) relies on a combination of AVHRR,
MODIS, and VIIRS data to generate daily active forest fire perimeters using the buffer
algorithm [26]. However, most research, particularly outside the CWFIS framework, has
been concentrated in the United States, often employing single algorithms rather than
exploring the potential of multiple or combined algorithmic approaches.

Previous work by Briones-Herrera et al. [16] marked an initial foray into assessing
forest fire perimeters for early mapping using NRT data and the convex hull algorithm,
experimenting with various aggregation distances to understand their relationship with
MODIS C6 burned area data (MCD64A1). Apart from those of the CWFIS, existing studies
on assessing forest fire perimeters are mainly implemented in US regions. Conversely, all
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these studies applied individual algorithms to delineate forest fire perimeters instead of
evaluating multiple or combinations of multiple algorithms and satellites. Although one
study applied the concave hull algorithm with several alfa values in California for assessing
fire perimeters [27], other studies only used buffer round-shape approaches [24-26], while
the buffer algorithm demonstrates both round and square shapes [28]. However, to the
best of our knowledge, there is no comprehensive study that has used a multiple, or a
combination of, algorithms approach with NRT or URT active fire data for delineating
forest fire perimeters, particularly in Canada. Consequently, considering the increasing
frequency and severity of forest fires in Canada, specifically in Alberta and the Northwest
Territories [14], it is crucial to conduct more research for assessing the performance of
individuals and multiple algorithms, including combination approaches to calculate forest
fire perimeters with URT data.

This study is aimed at addressing the pressing need for accurate real-time fire moni-
toring by comparing the effectiveness of buffer, convex, and concave hull algorithms in
estimating active fire perimeters. A comprehensive comparison is conducted to identify
the most effective method for delineating forest fire boundaries, which is crucial for timely
and effective fire management strategies. The performance of these algorithms, including
their individual and combined applications, is evaluated using VIIRS Suomi National
Polar-orbiting Partnership (SNPP) and MODIS active fire datasets from 2015 to 2021. To the
best of our knowledge, this study is the first to assess active forest fire perimeters employ-
ing multiple algorithms in both standalone and integrated approaches, with a particular
focus on the fires in Alberta and the Northwest Territories of Canada. The methodologies
utilized here hold significant promise for future research endeavors aimed at enhancing
the precision and promptness of forest fire perimeter assessments, leveraging NRT /URT
active fire data to improve emergency response and mitigation efforts.

2. Study Area and Data Requirements
2.1. Study Region

The study area comprises the northern part of Alberta (AB) and the southern part of
the Northwest Territories (NT), both characterized by extensive forested landscapes and
diverse climatic conditions (see Figure 1). In this region, 30 forest fires were selected based
on their size, ranging from very small to very large, occurring between 2015 and 2021. The
majority of these fires occurred in Alberta, with fewer in the NT (see Figure 1). Remarkably,
some fires extended across provincial boundaries into the NT, British Columbia (BC), and
Saskatchewan (SK).

Geographically, Alberta is divided into 21 natural subregions within six regions, each
characterized by distinctive landscape patterns, vegetation, soil types, elevations, and
physiographic features, as organized by local climate, topography, and geology [6,17,29].
The province’s elevation ranges from 150 to 3650 m above sea level, with an average annual
rainfall of 510 mm and temperatures ranging from —7.1 to 6 °C. Alberta experiences long,
cold winters and short summers [6]. This study examined fires occurring from April to
October, each lasting from a single day to over a month. The affected areas varied, ranging
from 200 to 500,000 hectares (Table 1 and Figure 1).

Table 1 provides a detailed account of significant wildfire events, including fire iden-
tification numbers, areas affected in hectares, dates of occurrence, responsible agencies,
causes, and regions covered. Each entry included the fire number and its alias when avail-
able. The data spanned from 2015 to 2021, highlighting the impact and extent of wildfires
across Alberta (AB) and neighboring regions, including the Northwest Territories (NT),
British Columbia (BC), and Saskatchewan (SK). The causes of the fires were classified as
follows: L for lightning-caused, U for unknown causes, and H for human-caused. The
Horse River Fire, also known as the Fort McMurray Fire, was the most extensive event in
2016 [30], scorching over 490,000 hectares. Each fire was assigned a unique identifier based
on the Alberta government’s classification system [31,32]. While most fires were identified
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by numbers, some had names designated by agencies like AB (Alberta), NT (Northwest
Territories), and PC-WB (Wood Buffalo National Park).
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Figure 1. The study area includes 30 forest fires from the provinces of Alberta and the Northwest
Territories in Canada. The details regarding these 30 forest fires are included in Table 1.
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Table 1. Summary of major forest fires in Alberta and surrounding regions during the period 2015
2021. The table includes the following columns: fire number (unique ID), alias (common name, if
available), area (ha) (area affected in hectares), start date, end date, agency (responsible managing
agency, e.g., AB for Alberta, NT for Northwest Territories, and PC for Parks Canada), causes (L for
lightning, U for unknown, and H for human), and covered (regions affected, e.g., AB for Alberta, NT
for Northwest Territories, BC for British Columbia, and SK for Saskatchewan).

# Fire Number Alias Area (ha) Start Date End Date  Agency Causes Covered
1 HWF-100-2016 * 229.66 10-Jun-16 10-Jun-16 AB L AB

2 HWEF-193-2016 * 553.53 15-Jul-16 18-Jul-16 AB 8] AB

3 SWE-030-2016 * 1671.48 30-Apr-16 4-May-16 AB L AB

4 HWE-252-2017 * 1703.37 13-Aug-17  23-Aug-17 AB L AB

5 HWEF-177-2018 * 2633.75 27-Jul-18 28-Jul-18 AB L AB

6 55-021-2019 * 3045.57 21-Jul-19 25-Jul-19 AB L AB-NT
7 HWEF-137-2018 * 3600.40 24-Jun-18 12-Jul-18 AB L AB

8 55-010-2019 * 3715.39 15-Jun-19 17-Jun-19 NT L NT

9 MWE-079-2021 * 3263.49 14-Jul-21 13-Aug-21 AB L AB
10 HWEF-083-2018 Little Rapids Fire 4117.34 24-May-18  28-May-18 AB L AB
11 MWF-059-2021 * 3605.36 13-Jul-21 15-Jul-21 AB L AB
12 HWEF-221-2017 Moose Lake Complex Fire 4709.00 5-Aug-17 22-Aug-17 AB L AB
13 SWF-094-2018 Rabbit Lake Fire 5028.97 24-Jun-18 25-Jun-18 AB L AB
14 LWF-099-2018 Rock Island Complex Fire 7278.63 22-May-18  29-May-18 AB L AB
15 MWEF-054-2019 Bocquene Complex Fire 8213.26 17-Jul-19 25-Jul-19 AB L AB
16 SWE-107-2017 Muskrat Lake Fire 12,729.14 14-Aug-17 8-Sep-17 AB U AB
17  HWE-280-2017 * 13,638.27 6-Sep-17 8-Sep-17 AB L AB
18 WB-039-2015 * 18,572.76 27-Jun-15 12-Aug-15 PC-WB 8] AB-NT
19  HBZ-001-2015 * 17,932.28 25-Jun-15 7-Jul-15 AB L AB-BC
20 MWE-051-2019 Old Fort Complex Fire 24,040.20 17-Jul-19 25-Jul-19 AB L AB
21  MWE-052-2015 * 22,356.65 24-Jun-15 13-Aug-15 AB L AB
22 PWF-052-2019 Battle Complex Fire 36,520.76 11-May-19 17-Jun-19 AB U AB
23 MWE-101-2015 * 57,674.08 27-Jun-15 28-Jul-15 AB L AB
24  HWF-066-2019 Jackpot Creek Fire 64,711.04 27-May-19 11-Jul-19 AB 8] AB
25  ABC-001-2016 Sweeney Creek Fire 72,527.47 18-Apr-16 29-Jul-16 AB H AB-BC
26 WB-004-2015 * 223,766.96  28-May-15 1-Oct-15 PC-WB 8] AB
27  SWEF-049-2019 McMillan Complex Fire 222,869.05  18-May-19 21-Jul-19 AB 8] AB
28 S5-019-2017 * 269,583.55 7-Jul-17 19-Aug-17 NT L NT
29  HWF-042-2019 Chuckegg Creek Fire 335,032.56  12-May-19 13-Sep-19 AB 8] AB
30  MWE-009-2016 Horse River Wildfire 490,964.79 1-May-16 6-Aug-16 AB 8] AB-SK

* The official alias name for these fires is not available.

2.2. Datasets
2.2.1. Active Fire Data

This research utilized thermal anomaly data from two satellite sources: the VIIRS on
the SNPP with a 375 m spatial resolution [33,34] and the MODIS (aqua and terra), which
combines data from both the Terra and Aqua satellites [35,36]. Specifically, VIIRS (SNPP)
I Band 375 m Active Fire Product NRT (VNP14IMGTDL_NRT) [34] and MODIS/Aqua +
Terra Thermal Anomalies/Fire locations 1 km FIRMS V0061 NRT (MCD14DL-NRT v0061)
were used [35]. These datasets are provided on an annual basis and are outputs of the Fire
Information for Resource Management System (FIRMS) [37], an initiative started in 2007
by the University of Maryland. This initiative is supported by NASA’s Applied Sciences
Program and the United Nations Food and Agriculture Organization (UN FAO) [38].

The VIIRS and MODIS datasets provide near-real-time information on active fire
locations and thermal anomalies, each offering a daily temporal resolution. The VIIRS
SNPP satellite passes over the equator at approximately 13:30 MT (local time) and 01:30
MT, making two Earth observations per day. In contrast, the MODIS Terra satellite passes
at about 10:30 MT and 22:30 MT, while the MODIS Aqua does so at 01:30 MT and 13:30
MT, resulting in at least four daily observations from the satellites. Although the potential
for observations ranges from six to eight times daily, this study analyzed data from each
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instrument separately within the specific period of each fire’s duration. Meanwhile, the
active fire data in CSV format, containing data points from these satellites, were utilized for
the years 2015 to 2021 [39].

2.2.2. Reference Data

The research incorporated data from the National Burn Area Composite (NBAC),
which is a GIS-based dataset spanning from 2015 to 2021 [40,41], to corroborate the Active
Fire Perimeter (AFP) estimates. The NBAC is an integral component of the Fire Monitoring,
Accounting, and Reporting System (FireMARS), created by Natural Resources Canada’s
(NRC’s) Canada Centre for Mapping and Earth Observation (CCMEO) in conjunction
with the Canadian Forest Service. This dataset aggregates annual maps of burned areas,
drawing 81% of its information from 30 m resolution Landsat imagery [41], 10% from
high-resolution images captured by aircraft and satellites with resolutions finer than 5 m,
and the remaining 9% from comprehensive aerial surveys [42].

2.2.3. Land Cover Data

This study also utilized the MODIS Land Cover Type Yearly Global 500 m MODIS
(MCD12Q1 v061) dataset [43], which is a global annual land use and land cover product
with a 500 m spatial resolution [43]. This dataset was employed to exclude areas covered
by water from the burn area perimeters calculated in the research [44].

3. Methods

A time series overlay was utilized to aggregate active fire data points, which were
aligned with the individual start and end dates of fires, as detailed in Table 1. Data points
from the VIIRS and MODIS annual datasets were extracted for 30 historical fires. These
data points were then used to determine the individual fire boundaries, following the
NBAC fire polygons shown in Figure 2. Clusters of data points within and around the
NBAC polygons were identified as individual fires, and from these, 30 sets of aggregated
data points were extracted for subsequent analysis. When multiple clusters of data points
are detected within the region of interest (ROI), a subdivision strategy is proposed. The
ROl is partitioned into smaller subregions, and each subregion is analyzed independently
using the designated algorithm.

Active fire perimeter calculation algorithms, both individual and combined, were
applied to the aggregated data points. MODIS-based annual land cover data were em-
ployed to exclude water-covered areas from the fire perimeters calculated. Following the
calculation of the perimeters, error metrics such as commission and omission errors, as
well as matching agreement, were computed to evaluate the accuracy of the algorithms
utilized in this study. A brief overview of the forest fire perimeter algorithms is provided
in this section.

3.1. Buffer, Concave, and Convex

A zone is created around spatial features (such as points, polylines, or polygons) at a
specified distance by the buffer algorithm [45,46] in Geographic Information Systems (GIS).
Two buffer shapes, round and square, are determined based on the spatial resolution of the
active fire data: 375 m for VIIRS and 1000 m for MODIS. By default, buffer distances are
calculated in grid units in QGIS, which necessitates reprojection [47,48]. Consequently, the
active fire data were reprojected to NAD 1983 Albers Canada (ESRI: 102001) to enable the
calculation of buffer distances in meters [47,48]. Both round and square buffer shapes were
evaluated for 30 fires to ascertain the more effective shape for delineating fire perimeters.

The term concave hull was first introduced by Galton and Duckham in 2006 and further
developed in 2007 [49]. The concave hull algorithm is utilized in various fields [50-53],
including 3D modeling [51], GIS [52], and medicine [53]. The algorithm defines two
main shapes: the alpha () shape algorithm and the k-nearest neighbors algorithm. The
a-shape concave hull algorithm is based on [54] the Delaunay triangulation approach,
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which involves cutting the edges of triangles to form a concave shape [50]. In contrast,
the k-nearest neighbors algorithm operates by searching for the nearest points. This study
employs the x-shape concave hull algorithm using the QGIS platform [50,55].

Data Acquisition (2015 to 2021) Time Series Overlay
I - == --=-=-=-=-=-=-========= I— __________________ 1
I
Active Fire Data : Day 1 Day 2 Efld :
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Figure 2. Workflow diagram of data acquisition and analysis for forest fire events (2015-2021).
This diagram illustrates the systematic process from collecting active fire data using VIIRS and
MODIS, through accuracy assessments with NBAC polygon data, to the final combination of satellite
observations and algorithms for active fire perimeter (AFP) calculation.

In QGIS, the x-shape concave hull algorithm provides a threshold value range between
0 and 1. Values greater than 0.5 result in a less concave shape (with 1 being completely
convex), while values less than 0.5 produce more concave shapes. Due to uncertainties in
selecting the optimal « parameter, a series of values between 0.1 and 0.5 was tested for
30 fires in this study. The threshold parameter that yielded the best results was then used
to calculate forest fire perimeters.

Furthermore, the computational algorithm for the convex hull, also known as Min-
imum Bounding Geometry, was first developed in 1972. An O (nlogn) algorithm was
created to compute the convex hull of n points in the plane [56]. Generally, the convex
hull algorithm encloses the entire layer or group subsets of features (points) with a vector
polygon [28] in a convex shape, similar to the concave hull algorithm. In the QGIS platform,
this is represented by a threshold value of 1, derived from the concave hull threshold range.
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3.2. Combination Approach

The combination approach involves merging (union-U combination) data from two
satellites (MODIS and VIIRS) or algorithms (buffer-B, concave-CC, and convex-CX) into
a single output for a particular fire event. This approach calculates forest fire perimeters
by combining data such as the union of the VIIRS buffer and MODIS buffer (VIIRS-B
U MODIS-B), VIIRS buffer square and MODIS buffer square (VIIRS-Bsq U MODIS-Bsq),
VIIRS-CC U MODIS-CC, and VIIRS-CX U MODIS-CX. Additionally, the combination of
algorithms follows similar merging (union-U/dissolved) methods among each satellite’s
calculated algorithms, such as B U CC, Bsq U CC, B U CX, and Bsq U CX, respectively. A
summary of the workflow used in this study is provided in Figure 2.

3.3. Accuracy Metrics

After water bodies were excluded from the AFP estimates, accuracy assessments
were conducted. This study employed error metrics derived from the confusion matrix
to evaluate spatial performance and accuracy: the commission error (CE) and omission
error (OE), along with the matching metric, comparing the referenced burned area to the
calculated AFP. The matching metric indicates the congruence between the calculated and

referenced data.
Total Intersect Area

Matching = X 100%, (@)

Total Referenced Area

Total Calculated Area — Total Intersect Area

Commission Error (CE) = Total Calculated Area

x 100%, (2)

. Total Referenced Area — Total Intersect Area
Omission Error (OE) = Total Reforenced Area x 100%.  (3)

Here, the Total Intersect Area is the overlap between the referenced (NBAC) and
calculated data (AFP), while the Total Calculated Area comes from the forest fire perimeter
calculations for a specific fire. The Total Referenced Area is derived from NBAC data. It is
important to note that the omission error can also be interpreted as

Omission Error (OE) = 100% — Matching 4)
Therefore, in the results section, the OE will not be provided to avoid redundancy.

4. Results
4.1. Comparative Analysis of Geospatial Error Detection

Figure 3 presents a comparison between two algorithms used for error detection in
geographical data analysis: the concave hull algorithm and the buffer algorithm.

The concave hull algorithm, depicted on the left side of each map set, was designed to
closely follow the contours of the data points, creating a concave boundary that wrapped
tightly around a set of points. This method was particularly useful for identifying errors
in sparse or irregularly distributed data, as it minimized the inclusion of empty space
within the hull, leading to a more precise identification of commission errors (highlighted
in yellow) and omission errors (highlighted in red).

On the other hand, the buffer algorithm, shown on the right side of each map set,
created a buffer zone around the data points, effectively capturing areas that might have
extended beyond the immediate vicinity of the points. This approach could be advanta-
geous when dealing with dense or regularly distributed data, as it allows for a broader
search area, potentially catching errors that the concave hull might have missed. However,
it might also have included more matching areas (marked with diagonal lines), which did
not contain errors but were within the buffer zone.

Each pair of maps (labeled a through d) demonstrated the algorithms” performance
across different scenarios, with the complexity and density of errors increasing from map a
tomap d.
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Concave Hull Algorithm Buffer Algorithm

/' ;" (a)

Matching [/ Commission Error B Omission Error E

Figure 3. Comparative analysis of geospatial error detection: concave hull vs. buffer algorithms. The
figure illustrates a side-by-side comparison of the concave hull algorithm and the buffer algorithm
in identifying errors within geographical data. Four pairs of maps (those labeled (a-d) correspond
to Table 1 and fires 3, 12, 18, and 30, respectively) showcase the effectiveness of each algorithm in
detecting commission errors (yellow) and omission errors (red), with areas of agreement marked by
diagonal lines.

4.2. Matching and Commission Error (CE) Percentages for VIIRS and MODIS Datasets

Table 2 presents matching and CE percentages for the VIIRS and MODIS datasets
across different concave o values, ranging from 0.1 to 0.5. Matching indicates the percentage
of the referenced area that intersects with the calculated area, reflecting how accurately
the calculated area aligns with the referenced area. CE represents the percentage of the
calculated area that does not intersect with the referenced area, indicating the extent of
overestimation in the calculated area.
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Table 2. Matching and commission error (CE) percentages for VIIRS and MODIS datasets across
different concave « values. The table shows how the alignment of the calculated area with the
referenced area (matching) and the overestimation of the calculated area (CE) vary as the « value
increases from 0.1 to 0.5.

Concave (x Values) 0.1 0.2 0.3 0.4 0.5
Matching 68.91 77.77 81.14 82.71 84.06
VIIRS
CE 20.59 24.60 27.33 29.71 31.64
Matching 57.71 66.27 70.28 73.07 74.98
MODIS
CE 25.58 28.63 29.98 31.96 32.99

For the VIIRS dataset, as the concave o value increased from 0.1 to 0.5 and the matching
percentage improved from 68.91% to 84.06%, indicating a better alignment of the calculated
area with the referenced area. However, the CE also increased from 20.59% to 31.64%,
showing a higher degree of overestimation. Similarly, for the MODIS dataset, the matching
percentage improved from 57.71% to 74.98% as the x value increased, though it remained
generally lower than that of the VIIRS dataset. The CE for the MODIS dataset also increased
from 25.58% to 32.99%, reflecting a similar trend of increasing overestimation. Overall, the
data indicated a trade-off, as the concave « values increased the alignment of the calculated
area with the referenced area improved, but this also led to increased overestimation. This
pattern was observed consistently in both the VIIRS and MODIS datasets.

Table 3 presents the comparison of different methods for sensor data matching and
their corresponding CE using VIIRS, MODIS, and a combination of both sensors. The
methods evaluated include buffer (B), buffer square (BSq), concave (CC), convex (CX), and
combinations of these methods (B U CC, BSq U CC, B U CX, BSq U CX). The « value for the
CC algorithms was selected by identifying those that provided a CE of less than 25% for
VIIRS and less than 30% for MODIS. Therefore, an « value of 0.2 was used for VIIRS, and
0.3 for MODIS, due to the superior output in AFP calculation through the CC algorithm.

Table 3. Comparison of match percentages and commission errors (CE) for different methods using
VIIRS, MODIS, and a combination of both sensors.

Sensors VIIRS (%) MODIS (%) COMBINATION (%)
Methods Match CE Match CE Match CE
Buffer (B) 75.11 24.56 81.99 40.52 89.65 40.12

Buffer Square (BSq) 78.56 26.31 85.24 42.95 91.56 42.71
Concave (CC) 77.77 24.60 70.28 29.98 83.19 30.25
Convex (CX) 87.60 36.09 81.23 37.54 89.86 39.68

BuUCC 86.33 29.55 87.69 42.74
BSq U CC 87.63 30.69 89.52 44.80

BuUCX 91.24 38.33 91.05 46.90
BSq U CX 91.91 39.05 92.19 48.58

For the VIIRS sensor, the buffer method achieved a match percentage of 75.11% with a
CE of 24.56%, while buffer square improved the match to 78.56% and CE to 26.31%. The
concave method had a match of 77.77% and a CE of 24.60%, whereas convex achieved a
higher match of 87.60% and a CE of 36.09%. The combination methods showed that B U
CC had a match of 86.33% with a CE of 29.55%, BSq U CC had an 87.63% match and 30.69%
CE, B U CX had a 91.24% match and 38.33% CE, and BSq U CX had the highest match at
91.91% with a CE of 39.05%.
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For the MODIS sensor, the buffer method achieved an 81.99% match with a CE of
40.52%, and buffer square further improved these values to 85.24% and 42.95%, respectively.
The concave method showed a lower match of 70.28% with a CE of 29.98%, while convex
showed a match of 81.23% with a CE of 37.54%. The combination methods demonstrated
that B U CC had a match of 87.69% with a CE of 42.74%, BSq U CC had an 89.52% match
and 44.8% CE, B U CX had a 91.05% match and 46.90% CE, and BSq U CX had the highest
match of 92.19% with a CE of 48.58%.

Using a combination of both sensors, the buffer method achieved an 89.65% match
with a CE of 40.12%, while buffer square showed improvements, with a 91.56% match and
a CE of 42.71%. The concave method achieved an 83.19% match with a CE of 30.25%, and
the convex method showed a match of 89.86% with a CE of 39.68%. Combination methods
for both sensors were not presented in the table.

The combination of sensors generally improved the match percentages across differ-
ent methods, indicating better performance compared to individual sensors. Among the
individual methods, convex tended to perform better in terms of higher match percentages,
although it might have resulted in higher commission errors. The buffer square method
also showed consistent improvements in match percentages over the buffer method. Com-
bining different methods (e.g., B U CX and BSq U CX) generally yielded the highest match
percentages but might have come at the cost of increased commission errors.

5. Discussion

The trade-off between matching and CE percentages was highlighted when analyzing
different concave « values within the VIIRS and MODIS datasets. As the concave o value
increased, the alignment of the calculated area with the referenced area improved, as
evidenced by higher matching percentages. However, this improvement was accompanied
by an increase in CE, indicating greater overestimation. This trend was consistent across
both datasets, with the VIIRS dataset generally exhibiting higher matching percentages
than the MODIS dataset. The observed trade-off suggested that while higher concave o
values might enhance alignment accuracy, they also increased the risk of overestimating
the error regions.

In Table 3, the comparison of different methods for sensor data matching and their
corresponding CEs using VIIRS, MODIS, and a combination of both sensors provided addi-
tional insights. The buffer and buffer square methods consistently showed high matching
percentages but also high CEs, reflecting their propensity for overestimation. The concave
method demonstrated a more balanced approach with moderate matching percentages
and a lower CE, indicating better precision in error detection. The convex method, al-
though achieving the highest matching percentages, incurred significant overestimations,
suggesting its suitability for scenarios where exhaustive error detection was prioritized
over precision.

The combination methods (e.g., B U CC, BSq U CC, B U CX, and BSq U CX) generally
yielded the highest match percentages but also came with increased commission errors. This
finding underscored the potential benefit of combining different methods to enhance overall
performance, particularly in complex or heterogeneous datasets. The combination of sensors
typically improved match percentages, indicating better performances compared to using
individual sensors. This enhancement suggested that integrating multiple data sources could
provide a more comprehensive and accurate geospatial error detection framework.

Opverall, the results highlighted the importance of context-specific algorithm selection
in geospatial error detection. The choice between precision (concave hull) and comprehen-
siveness (buffer) depended on the data distribution and the specific requirements of the
analysis. The trade-offs between matching accuracy and overestimation had to be carefully
considered to optimize error detection performance. Future research could explore hybrid
approaches that dynamically adjust the balance between precision and comprehensiveness
based on real-time data characteristics, potentially mitigating the limitations observed in
this study. Additionally, the integration of more diverse datasets and advanced machine
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learning techniques could further enhance the robustness and accuracy of geospatial error
detection methodologies.

This study utilized NRT active fire data; however, the initial objectives and methodol-
ogy were tailored for URT data. At present, URT active fire data with global coverage is
scarce, with the majority being confined to the USA and Canada [19]. Consequently, the fo-
cus of this study was narrowed to Canada, rather than adopting a global viewpoint. Despite
this, the methodology developed in this study holds potential for broader geographical
applications and would be enhanced by preliminary testing in diverse regions.

6. Concluding Remarks

This study presented a detailed comparative analysis of the concave hull and buffer
algorithms for the estimation of active fire perimeters, elucidating their respective strengths
and limitations. The concave hull algorithm demonstrated higher precision in identi-
fying commission and omission errors, particularly in sparse or irregularly distributed
datasets. In contrast, the buffer algorithm excelled in detecting errors within dense or
regularly distributed data by encompassing a broader search area, albeit with a tendency
towards overestimation.

The investigation into matching and commission error (CE) percentages for the VIIRS
and MODIS datasets revealed a consistent trade-off: increasing the concave o value en-
hanced the alignment of the calculated area with the referenced area, but also raised the risk
of overestimation. This pattern underscored the importance of context-specific algorithm
selection based on the characteristics of the geospatial data and the specific requirements of
the error detection task.

Further, the comparative analysis of different methods for sensor data matching using
VIIRS, MODIS, and their combination indicated that while methods like buffer and buffer
square achieved high matching percentages, they also incurred higher commission errors.
The concave method offered a balanced approach, with moderate matching percentages and
lower CEs, while the convex method, despite its highest matching percentages, suffered
from significant overestimation. Combining different methods and sensors generally
improved match percentages, suggesting that integrated approaches could enhance overall
performance in complex datasets.

In conclusion, this study highlighted the critical need for careful algorithm selection
in geospatial error detection, balancing precision and comprehensiveness based on data
distribution and analytical goals. Future research should focus on developing hybrid
approaches that adaptively balance these trade-offs, integrating advanced machine learning
techniques and diverse datasets to improve the robustness and accuracy of geospatial error
detection methodologies. This approach would provide a more effective framework for
researchers and practitioners in the field of geospatial analysis, enabling more accurate and
reliable error detection in various applications.

Our study conducts a thorough evaluation of Canada’s burned areas, utilizing the
Fire Information for Resource Management System (FIRMS) for its near-real-time data
capabilities. While such data are available on a global scale, our research is tailored to
harness ultra real-time data, a resource presently limited to the United States and Canada.
This strategic decision is in line with our commitment to delivering the most immediate
and precise wildfire assessments. Anticipating future developments, we have designed
our study to be flexible and scalable, ready to incorporate ultra real-time data from other
regions as it becomes globally accessible.
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The following abbreviations are used in this manuscript:

AFP Active fire perimeter

AVHRR Advanced very high-resolution radiometer

B Buffer

CAD Canadian dollar

CcC Concave hull algorithm

CCMEO Canada Centre for Mapping and Earth Observation
CE Commission error

CIFFC Canadian Interagency Forest Fire Centre

CWFEFIS Canadian Wildland Fire Information System

X Convex hull algorithm

EOSDIS Earth Observing System Data and Information System
FAO Food and Agriculture Organization

FireMARS  Fire Monitoring, Accounting, and Reporting System
FIRMS Fire Information for Resource Management System
GIS Geographic Information System

Mha Million hectares

MODIS Moderate Resolution Imaging Spectroradiometer
MT Mountain Time

NAD North American Datum

NASA National Aeronautics and Space Administration’s
NBAC National Burn Area Composite

NRC Natural Resources Canada

NRT Near-real-time

NT Northwest Territories

OE Omission error

RT Real-Time

SNPP Suomi National Polar-orbiting Partnership

UN United Nations

URT Ultra-real-time

VIIRS Visible Infrared Imaging Radiometer Suite
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